Learning Objectives

At the end of the class you should be able to:

@ explain how cycle checking and multiple-path pruning can
improve efficiency of search algorithms

@ explain the complexity of cycle checking and multiple-path
pruning for different search algorithms

@ justify why the monotone restriction is useful for A* search

@ predict whether forward, backward, bidirectional or
island-driven search is better for a particular problem

@ demonstrate how dynamic programming works for a particular
problem

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added

Breadth-first First node added

Best-first Global min h(p)

Lowest-cost-first | Minimal cost(p)

A* Minimal f(p)

Complete — if there a path to a goal, it can find one, even on
infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added | No No Linear
Breadth-first First node added | Yes No Exp
Best-first Global min h(p) | No No Exp
Lowest-cost-first | Minimal cost(p) | Yes No Exp
A* Minimal f(p) Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Cycle Pruning

S

@ A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Graph searching with cycle pruning

Input: a graph,

a set of start nodes,

Boolean procedure goal(n) that tests if n is a goal node.
frontier := {(s) : s is a start node}
while frontier is not empty:

select and remove path (no, ..., ng) from frontier
if ng Q {no,...,nk,l} .
if goal(ng):
return (ng, ..., ng)

Frontier := Frontier U {{no, ..., nk,n) : {(ng,n) € A}

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
time in path length.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

@ For other methods, checking for cycles can be done in
time in path length.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

@ For other methods, checking for cycles can be done in linear
time in path length.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Cycle Pruning

S

@ In depth-first search, checking for cycles can be done in
constant time in path length.

@ For other methods, checking for cycles can be done in linear
time in path length.

e With cycle pruning, which algorithms halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

O—

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

GO—

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

@ What needs to be stored?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

GO—

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

@ What needs to be stored?

@ Lowest-cost-first search with multiple-path pruning is
Dijkstra's algorithm, and is the same as A* with multiple-path
pruning and a heuristic function of 0.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Graph searching with multiple-path pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.
frontier :== {(s) : s is a start node}
expanded := {}
while frontier is not empty:
select and remove path (ng, ..., ng) from frontier
if n, & expanded :
add ny to expanded
if goal(ny):
return (ng, ..., ng)
Frontier := Frontier U{(no, ..., nk,n) : (ng,n) € A}

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

@ How does multiple-path pruning compare to cycle pruning?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

@ How does multiple-path pruning compare to cycle pruning?

@ Which search algorithms with multiple-path pruning always
halt on finite graphs?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

@ How does multiple-path pruning compare to cycle pruning?

@ Which search algorithms with multiple-path pruning always
halt on finite graphs?

@ What is the time overhead of multiple-path pruning?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

@ How does multiple-path pruning compare to cycle pruning?

@ Which search algorithms with multiple-path pruning always
halt on finite graphs?

@ What is the time overhead of multiple-path pruning?
@ What is the space overhead of multiple-path pruning?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?
Is it better for depth-first or breadth-first searches?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?
What is the space overhead of multiple-path pruning?
Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n has a lower cost than the
first path to n?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n has a lower cost than the
first path to n?
@ remove all paths from the frontier that use the longer path.
@ change the initial segment of the paths on the frontier to use
the lower-cost path.
@ ensure this doesn't happen. Make sure that the lower-cost
path to a node is expanded first.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p’ on the
frontier.

@ Suppose path p’ ends at node n’.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p’ on the
frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p’ on the
frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').

@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.
The path to n via p’ has a lower cost that p so:

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p’ on the
frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').

@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.
The path to n via p’ has a lower cost that p so:
cost(p’) + cost(n’, n) < cost(p).

cost(n',n) <

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p’ on the
frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').

@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.
The path to n via p’ has a lower cost that p so:
cost(p’) + cost(n’, n) < cost(p).

cost(n', n) < cost(p) — cost(p’) <

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p’ on the
frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n").

@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.
The path to n via p’ has a lower cost that p so:
cost(p’) + cost(n’, n) < cost(p).

cost(n', n) < cost(p) — cost(p’) < h(n") — h(n).

We can ensure this doesn’'t occur if
|h(n") — h(n)| < cost(n’, n).

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Monotone Restriction

@ Heuristic function h satisfies the monotone restriction if
|h(m) — h(n)| < cost(m, n) for every arc (m, n).

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

ne Restriction

@ Heuristic function h satisfies the monotone restriction if
|h(m) — h(n)| < cost(m, n) for every arc (m, n).

o If h satisfies the monotone restriction, A* with multiple path
pruning always finds a least-cost path to a goal.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

ne Restriction

@ Heuristic function h satisfies the monotone restriction if
|h(m) — h(n)| < cost(m, n) for every arc (m, n).

o If h satisfies the monotone restriction, A* with multiple path
pruning always finds a least-cost path to a goal.

@ This is a strengthening of the admissibility criterion.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

@ Forward branching factor: number of arcs out of a node.

@ Backward branching factor: number of arcs into a node.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

@ Forward branching factor: number of arcs out of a node.

@ Backward branching factor: number of arcs into a node.

@ Search complexity is b". Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

@ Forward branching factor: number of arcs out of a node.
@ Backward branching factor: number of arcs into a node.

@ Search complexity is b". Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

@ Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

@ The main problem is making sure the frontiers meet.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

@ The main problem is making sure the frontiers meet.

@ This is often used with
> a breadth-first method (e.g., least-cost-first search) that builds
a set of states that can lead to the goal quickly.
» in the other direction, another method (typically depth-first)
can be used to find a path to these interesting states.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Bidirectional Search

@ Idea: search backward from the goal and forward from the
start simultaneously.

o This wins as 2b%/2 <« bk.
This can result in an exponential saving in time and space.

@ The main problem is making sure the frontiers meet.

@ This is often used with
> a breadth-first method (e.g., least-cost-first search) that builds
a set of states that can lead to the goal quickly.
» in the other direction, another method (typically depth-first)
can be used to find a path to these interesting states.
» How much is stored in the breadth-first method, can be tuned
depending on the space available.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Island Driven Search

@ |dea: find a set of islands between s and g.
S—ip—h— ... —ipn1—&

There are m smaller problems rather than 1 big problem.
@ This can win as mb*/™ < bk,

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Island Driven Search

@ |dea: find a set of islands between s and g.
S—ip—h— ... —ipn1—&

There are m smaller problems rather than 1 big problem.

@ This can win as mb*/™ < bk,

@ The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

@ Requires more knowledge than just the graph and a heuristic
function.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Island Driven Search

@ |dea: find a set of islands between s and g.
S—ip—h— ... —ipn1—&

There are m smaller problems rather than 1 big problem.

@ This can win as mb*/™ < bk,

@ The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

@ Requires more knowledge than just the graph and a heuristic
function.

@ The subproblems can be solved using islands = hierarchy of
abstractions.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.
@ This can be used locally to determine what to do from any
state.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.
@ This can be used locally to determine what to do from any
state.
o Why not use A*?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.
@ This can be used locally to determine what to do from any
state.
o Why not use A*?
@ There are two main problems:

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual
distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

_ [0 if is_goal(n),
dist(n) = { min(, mea(|(n, my| + dist(m)) otherwise.

using least-cost-first search in the reverse graph.
@ This can be used locally to determine what to do from any
state.
o Why not use A*?

@ There are two main problems:

P It requires enough space to store the graph.
» The dist function needs to be recomputed for each goal.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 3.4

. Poole and A.K. Mackworth 2010 ificial Intelligence, Lecture 3.4

