Learning Objectives

At the end of the class you should be able to:
@ identify a supervised learning problem

@ characterize how the prediction is a function of the error
measure

@ avoid mixing the training and test sets
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Supervised Learning

Given:
@ a set of inputs features Xq,..., X,
@ a set of target features Yi,..., Yx

@ a set of training examples where the values for the input
features and the target features are given for each
example

@ a new example, where only the values for the input
features are given

predict the values for the target features for the new example.
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Supervised Learning

Given:
@ a set of inputs features Xq,..., X,
@ a set of target features Yi,..., Yx

@ a set of training examples where the values for the input
features and the target features are given for each
example

@ a new example, where only the values for the input
features are given

predict the values for the target features for the new example.
@ classification when the Y; are discrete

@ regression when the Y; are continuous
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).

Two representations of the same data:

— Y is the length of trip chosen.

— Each Y; is an indicator variable that has value 1 if the
chosen length is i, and is 0 otherwise.

Example Y Example Y1 Yo Y3 Yy Ys Yp
e 1 e 1 0 0 0O 0 O
e 6 e 0o 0 0 0 0 1
e 6 e o 0 0 0 0 1
€4 2 € o 1 0 0 0 O
es 1 es 1 0 0 0 0 O

What is a prediction?
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

@ 0. is the observed value of target feature on example e.
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

@ 0. is the observed value of target feature on example e.

@ p. is the predicted value of target feature on example e.
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:
@ 0. is the observed value of target feature on example e.
@ p. is the predicted value of target feature on example e.
@ The error of the prediction is a measure of how close p; is
to Oe.
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

@ 0. is the observed value of target feature on example e.

@ p. is the predicted value of target feature on example e.

@ The error of the prediction is a measure of how close p; is
to Oe.

@ There are many possible errors that could be measured.

Sometimes p. can be a real number even though o, can only
have a few values.
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Measures of error

E is a sequence of examples, with single target feature. For
e € E, o, is observed value and p, is predicted value:

@ absolute error Ly(E) = Z |0e — Pe

ecE
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Measures of error

E is a sequence of examples, with single target feature. For
e € E, o, is observed value and p, is predicted value:

@ absolute error Ly(E) = Z |0e — Pe

ecE

@ sum of squares error L5(E) = Z(oe — Pe)?
ecE
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Measures of error

E is a sequence of examples, with single target feature. For
e € E, o, is observed value and p, is predicted value:

@ absolute error Ly(E) = Z |0e — Pe

ecE

@ sum of squares error L5(E) = Z(oe — Pe)?
ecE
@ worst-case error: Lo (E) = max |0e — Pel
ec
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Measures of error

E is a sequence of examples, with single target feature. For
e € E, o, is observed value and p, is predicted value:

@ absolute error Ly(E) = Z |0e — Pe

ecE

@ sum of squares error L5(E) = Z(oe — Pe)?
ecE
@ worst-case error: Lo (E) = max |0e — Pel
ec

@ number wrong: Lo(E) = #{e : 0 # pe}
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Measures of error

E is a sequence of examples, with single target feature. For
e € E, o, is observed value and p, is predicted value:

@ absolute error Ly(E) = Z |0e — Pe

ecE

@ sum of squares error L5(E) = Z(oe — Pe)?
ecE

@ worst-case error: Ly (E) = max |0 — pe|
eckE

@ number wrong: Lo(E) = #{e : 0 # pe}
@ A cost-based error takes into account costs of errors.
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Measures of error (cont.)

With binary feature: o, € {0,1}:
@ likelihood of the data

H P (1 0Oc)

ecE
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Measures of error (cont.)

With binary feature: o, € {0,1}:
@ likelihood of the data

H P (1 0Oc)

ecE

@ log likelihood

Z (Oe Iog Pe + (1 - Oe) |0g(1 - pe))
ecE
in terms of information:
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Measures of error (cont.)

With binary feature: o, € {0,1}:
@ likelihood of the data

H P (1 0Oc)

ecE

@ log likelihood

Z (0 log pe + (1 — 0¢) log(1 — pe))
ecE
in terms of information:
It is negative of number of bits to encode the data given

a code based on p..
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Information theory overview

@ A bit is a binary digit.
@ 1 bit can distinguish
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Information theory overview

@ A bit is a binary digit.
@ 1 bit can distinguish 2 items
@ k bits can distinguish
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Information theory overview

@ A bit is a binary digit.
@ 1 bit can distinguish 2 items
@ k bits can distinguish 2% items

@ n items can be distinguished using
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Information theory overview

@ A bit is a binary digit.
@ 1 bit can distinguish 2 items
@ k bits can distinguish 2% items

@ n items can be distinguished using log, n bits

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 7.2



Information theory overview

A bit is a binary digit.

1 bit can distinguish 2 items

k bits can distinguish 2% items

n items can be distinguished using log, n bits
Can we do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

P(a) = 5. P(6) = 3. P(c) = £ P(d) = ¢
Consider the code:

a 0 b 10 c 110 d 111
This code uses bits.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 7.2



Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a):§,P(b):Z,P(c):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a) §7P(b)_Z,P(C):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) x 14+ P(b) x 2+ P(c) x 3+ P(d) x 3
L S

2 4 8 8 4

The string aacabbda has code
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a):§,P(b):Z,P(c):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) x 14+ P(b) x 2+ P(c) x 3+ P(d) x 3
N N
2 4 8 8 4
The string aacabbda has code 00110010101110.

The code 0111110010100 represents string
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a):§,P(b):Z,P(c):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) x 14+ P(b) x 2+ P(c) x 3+ P(d) x 3
N N
2 4 8 8 4
The string aacabbda has code 00110010101110.

The code 0111110010100 represents string adcabba
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Information Content

e To identify x, we need — log, P(x) bits.

@ Give a distribution over a set, to a identify a member, the
expected number of bits

Z —P(x) x log, P(x).

is the information content or entropy of the distribution.

@ The expected number of bits it takes to describe a
distribution given evidence e:

I(e) =) —P(x|e) x log, P(x[e).

X
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Information Gain

Given a test that can distinguish the cases where « is true
from the cases where « is false, the information gain from this
test is:

I(true) — (P(a) x I(a) + P(—a) x I(—a)).

@ [(true) is the expected number of bits needed before the
test

o P(a) x I(a) + P(—a) x I(—«) is the expected number of
bits after the test.
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Linear Predictions

O, NWPH OGO N O
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Linear Predictions

O, NWPH OGO N O

L3

Ly
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
Eis
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Point Estimates

Predict single value for numerical feature Y on examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
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Point Estimates

Predict single value for numerical feature Y on examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
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Point Estimates

Predict single value for numerical feature Y on examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
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Point Estimates

Predict single value for numerical feature Y on examples E.
@ The prediction that minimizes the sum of squares error on

E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is

the median value of Y.
@ The prediction that minimizes the number wrong on E is
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Point Estimates

Predict single value for numerical feature Y on examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
@ The prediction that minimizes the number wrong on E is
the mode of Y.
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical frequency.
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical frequency.

@ When Y has values {0, 1}, the prediction that minimizes
the entropy on E is
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Point Estimates

Predict single value for numerical feature Y on examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical frequency.

@ When Y has values {0, 1}, the prediction that minimizes
the entropy on E is the empirical frequency.
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Point Estimates

Predict single value for numerical feature Y on examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
@ The prediction that minimizes the number wrong on E is
the mode of Y.
@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2
@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical frequency.
@ When Y has values {0, 1}, the prediction that minimizes
the entropy on E is the empirical frequency.
But that doesn't mean that these predictions minimize the
error for future predictions....
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Training and Test Sets

To evaluate how well a learner will work on future predictions,
we divide the examples into:

@ training examples that are used to train the learner
@ test examples that are used to evaluate the learner

...these must be kept separate.
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