
Understanding Independence: Common ancestors

smokealarm

fire

alarm and smoke are

dependent

alarm and smoke are

independent

given fire

Intuitively, fire can
explain alarm and smoke;
learning one can affect
the other by changing
your belief in fire.
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Understanding Independence: Chain

report

alarm

leaving

alarm and report are

dependent

alarm and report are

independent

given
leaving

Intuitively, the only way
that the alarm affects
report is by affecting
leaving .
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Understanding Independence: Common descendants

tampering

alarm

fire tampering and fire are

independent

tampering and fire are

dependent

given alarm

Intuitively, tampering
can explain away fire
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Understanding independence: example

B CA D E F

G H

M

I J K L
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Understanding independence: questions

1. On which given probabilities does P(N) depend?

2. If you were to observe a value for B, which variables’
probabilities will change?

3. If you were to observe a value for N, which variables’
probabilities will change?

4. Suppose you had observed a value for M; if you were to then
observe a value for N, which variables’ probabilities will
change?

5. Suppose you had observed B and Q; which variables’
probabilities will change when you observe N?
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What variables are affected by observing?

If you observe variable(s) Y , the variables whose posterior
probability is different from their prior are:
I The ancestors of Y and
I their descendants.

Intuitively (if you have a causal belief network):
I You do abduction to possible causes and
I prediction from the causes.
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d-separation

A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:
I If there are arcs A→ B and B → C such that B 6∈ Z , then the

connection at B between A and C is open.
I If there are arcs B → A and B → C such that B 6∈ Z , then the

connection at B between A and C is open.
I If there are arcs A→ B and C → B such that B (or a

descendent of B) is in Z , then the connection at B between A
and C is open.

X is d-connected from Y given Z if there is a path from X to
Y , along open connections.

X is d-separated from Y given Z if it is not d-connected.

X is independent Y given Z for all conditional probabilities iff
X is d-separated from Y given Z
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Markov Random Field

A Markov random field is composed of

of a set of random variables: X = {X1,X2, . . . ,Xn} and

a set of factors {f1, . . . , fm}, where a factor is a non-negative
function of a subset of the variables.

and defines a joint probability distribution:

P(X = x) ∝
∏
k

fk(Xk = xk) .

P(X = x) =
1

Z

∏
k

fk(Xk = xk) .

Z =
∑
x

∏
k

fk(Xk = xk)

where fk(Xk) is a factor on Xk ⊆ X, and
xk is x projected onto Xk .
Z is a normalization constant known as the partition function.
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Markov Networks and Factor graphs

A Markov network is a graphical representation of a Markov
random field where the nodes are the random variables and
there is an arc between any two variables that are in a factor
together.

A factor graph is a bipartite graph, which contains a variable
node for each random variable and a factor node for each
factor. There is an edge between a variable node and a factor
node if the variable appears in the factor.

A belief network is a type of Markov random field where the
factors represent conditional probabilities, there is a factor for
each variable, and directed graph is acyclic.
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Independence in a Markov Network

The Markov blanket of a variable X is the set of variables that
are in factors with X .

A variable is independent of the other variables given its
Markov blanket.

X is connected to Y given Z if there is a path from X to Y in
the Markov network, which does not contain an element of Z .

X is separated from Y given Z if it is not connected.

A positive distribution is one that does not contain zero
probabilities.

X is independent Y given Z for all positive distributions iff X
is separated from Y given Z
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Canonical Representations

The parameters of a graphical model are the numbers that
define the model.

A belief network is a canonical representation: given the
structure and the distribution, the parameters are uniquely
determined.

A Markov random field is not a canonical representation.
Many different parameterizations result in the same
distribution.
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Representations of Conditional Probabilities

There are many representations of conditional probabilities and
factors:

Tables

Decision Trees

Rules

Weighted Logical Formulae

Noisy-or

Logistic Function

Neural network
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Tabular Representation

P(D | A,B,C ) :

A B C D Prob
true true true true 0.9
true true true false 0.1
true true false true 0.9
true true false false 0.1
true false true true 0.2
true false true false 0.8
true false false true 0.2
true false false false 0.8
false true true true 0.3
false true true false 0.7
false true false true 0.4
false true false false 0.6
false false true true 0.3
false false true false 0.7
false false false true 0.4
false false false false 0.6
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Decision Tree Representation

P(d | A,B,C )

falsetrue

falsetrue

A

C

0.3

falsetrue

B

0.9 0.2 0.4
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Rule Representation

0.9 : d ← a ∧ b

0.2 : d ← a ∧ ¬b

0.3 : d ← ¬a ∧ c

0.4 : d ← ¬a ∧ ¬c
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Weighted Logical Formulae

d ↔ ((a ∧ b ∧ n0)

∨ (a ∧ ¬b ∧ n1)

∨ (¬a ∧ c ∧ n2)

∨ (¬a ∧ ¬c ∧ n3))

ni are independent:

P(n0) = 0.9

P(n1) = 0.2

P(n2) = 0.3

P(n3) = 0.4

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 9.3 16 / 23



Noisy-or

The robot is wet if it gets wet from rain or coffee or sprinkler or
another reason. They each have a probability of making the robot
wet −→ noisy-or.

V1 V2 Vk

X

…
A1 A2 Ak

X

…

V1 V2 Vk…

A0

X has Boolean parents V1 . . .Vk , −→ k + 1 parameters p0 . . . pk .
invent Boolean variables A0,A1, . . . ,Ak ,
with probabilities P(A0) = p0 and for i > 0

P(Ai=true | Vi=true) = pi

P(Ai=true | Vi=false) = 0

P(X | A0,A1, . . . ,Ak) =

{
1 if ∃i Ai is true
0 if ∀i Ai is false
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Noisy-or: example

Suppose the robot could get wet from rain or coffee.

There is a probability that it gets wet from rain if it rains, and
a probability that it gets wet from coffee if it has coffee, and a
probability that it gets wet for other reasons.

We could have:
P(wet from rain | rain) = 0.3,
P(wet from coffee | coffee) = 0.2
P(wet for other reasons) = 0.1.

The robot is wet if it wet from rain, wet from coffee, or wet
for other reasons.

wet ↔ wet from rain∨wet from coffe∨wet for other reasons
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Logistic Functions

P(h | e) =
P(h ∧ e)

P(e)

=
P(h ∧ e)

P(h ∧ e) + P(¬h ∧ e)

=
1

1 + P(¬h ∧ e)/P(h ∧ e)

=
1

1 + e− logP(h∧e)/P(¬h∧e)

= sigmoid(log odds(h | e))

sigmoid(x) =
1

1 + e−x

odds(h | e) =
P(h ∧ e)

P(¬h ∧ e)
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Logistic Functions

A conditional probability is the sigmoid of the log-odds.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

sigmoid(x) =
1

1 + e−x

A logistic function is the sigmoid of a linear function.
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Logistic Representation of Conditional Probability

P(d | A,B,C ) = sigmoid(0.9† ∗ A ∗ B

+ 0.2† ∗ A ∗ (1− B)

+ 0.3† ∗ (1− A) ∗ C

+ 0.4† ∗ (1− A) ∗ (1− C ))

where 0.9† is sigmoid−1(0.9).

P(d | A,B,C ) = sigmoid(0.4†

+ (0.2† − 0.4†) ∗ A

+ (0.9† − 0.2†) ∗ A ∗ B

+ ...
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Neural Network

Build a neural network to predict D from A, B, C

A neural network tries to predict expected values

The expected value of a variable with domain {0, 1} is its
probability.
Typically use a sigmoid activation at the root, and optimize
with log likelihood.
— such a neural network is a logistic regression model with
learned features

For other discrete variables, the expected value is not the
probability.
We create a Boolean ({0, 1}) variable for each value —
indicator variable ≡ having an output for each value

For other domains, a Bayesian neural network can represent
the distribution over the outputs (not just a point prediction).
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