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Understanding Independence: Common ancestors

@ alarm and smoke are
dependent

@ alarm and smoke are
@ independent given fire
@ Intuitively, fire can

explain alarm and smoke;
learning one can affect

@ @ the other by changing
your belief in fire.
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Understanding Independence: Chain
@ alarm and report are
dependent

@ alarm and report are
independent given

w leaving

@ Intuitively, the only way
that the alarm affects

@ report is by affecting
leaving.
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Understanding Independence: Common descendants

@ @
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@ tampering and fire are
independent

@ tampering and fire are
dependent given alarm

o Intuitively, tampering
can explain away fire
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Understanding independence: example
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Understanding independence: questions

1. On which given probabilities does P(/N) depend?
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Understanding independence: questions

1. On which given probabilities does P(/N) depend?

2. If you were to observe a value for B, which variables’
probabilities will change?

3. If you were to observe a value for NV, which variables’
probabilities will change?

4. Suppose you had observed a value for M; if you were to then
observe a value for N, which variables' probabilities will
change?
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Understanding independence: questions

1. On which given probabilities does P(/N) depend?

2. If you were to observe a value for B, which variables’
probabilities will change?

3. If you were to observe a value for NV, which variables’
probabilities will change?

4. Suppose you had observed a value for M; if you were to then
observe a value for N, which variables' probabilities will
change?

5. Suppose you had observed B and @; which variables’
probabilities will change when you observe N7
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What variables are affected by observing?

e If you observe variable(s) Y, the variables whose posterior
probability is different from their prior are:

» The ancestors of Y and
» their descendants.

@ Intuitively (if you have a causal belief network):

» You do abduction to possible causes and
» prediction from the causes.
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@ A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:

» |f there are arcs A — B and B — C such that B ¢7, then the
connection at B between A and C is open.

» If there are arcs B — A and B — C such that B ¢ Z, then the
connection at B between A and C is open.

» If there are arcs A — B and C — B such that B (or a
descendent of B) is in Z, then the connection at B between A
and C is open.
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@ A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:

» |f there are arcs A — B and B — C such that B ¢7, then the
connection at B between A and C is open.

» If there are arcs B — A and B — C such that B ¢ Z, then the
connection at B between A and C is open.

» If there are arcs A — B and C — B such that B (or a
descendent of B) is in Z, then the connection at B between A
and C is open.

e X is d-connected from Y given Z if there is a path from X to
Y, along open connections.

@ X is d-separated from Y given Z if it is not d-connected.
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@ A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:

» |f there are arcs A — B and B — C such that B ¢7, then the
connection at B between A and C is open.

» If there are arcs B — A and B — C such that B ¢ Z, then the
connection at B between A and C is open.

» If there are arcs A — B and C — B such that B (or a
descendent of B) is in Z, then the connection at B between A
and C is open.

e X is d-connected from Y given Z if there is a path from X to
Y, along open connections.

@ X is d-separated from Y given Z if it is not d-connected.

° X is independent Y given V4 for all conditional probabilities iff
X is d-separated from Y given Z
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Markov Random Field

A Markov random field is composed of
e of a set of random variables: X = {X1, X2,...,X,} and

@ a set of factors {f1,...,fm}, where a factor is a non-negative
function of a subset of the variables.
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Markov Random Field

A Markov random field is composed of
e of a set of random variables: X = {X1, X2,...,X,} and

@ a set of factors {f1,...,fm}, where a factor is a non-negative
function of a subset of the variables.

and defines a joint probability distribution:
PX=x) o« J]AXe=x)-

k
POX=x) = 2T =x).

k
Z = Zka(Xk:Xk)
X  k

where fi(Xx) is a factor on X, C X, and
Xk is X projected onto Xy.
Z is a normalization constant known as the partition function.
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Markov Networks and Factor graphs

@ A Markov network is a graphical representation of a Markov
random field where the nodes are the random variables and
there is an arc between any two variables that are in a factor
together.
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Markov Networks and Factor graphs

@ A Markov network is a graphical representation of a Markov
random field where the nodes are the random variables and
there is an arc between any two variables that are in a factor
together.

@ A factor graph is a bipartite graph, which contains a variable
node for each random variable and a factor node for each
factor. There is an edge between a variable node and a factor
node if the variable appears in the factor.
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Markov Networks and Factor graphs

@ A Markov network is a graphical representation of a Markov
random field where the nodes are the random variables and
there is an arc between any two variables that are in a factor
together.

@ A factor graph is a bipartite graph, which contains a variable
node for each random variable and a factor node for each
factor. There is an edge between a variable node and a factor
node if the variable appears in the factor.

@ A belief network is a type of Markov random field where the
factors represent conditional probabilities, there is a factor for
each variable, and directed graph is acyclic.
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Independence in a Markov Network

@ The Markov blanket of a variable X is the set of variables that
are in factors with X.

@ A variable is independent of the other variables given its
Markov blanket.
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Independence in a Markov Network

@ The Markov blanket of a variable X is the set of variables that
are in factors with X.

@ A variable is independent of the other variables given its
Markov blanket.

@ X is connected to Y given Z if there is a path from X to Y in
the Markov network, which does not contain an element of Z.

@ X is separated from Y given Z if it is not connected.
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Independence in a Markov Network

The Markov blanket of a variable X is the set of variables that
are in factors with X.

A variable is independent of the other variables given its
Markov blanket.

@ X is connected to Y given Z if there is a path from X to Y in
the Markov network, which does not contain an element of Z.

X is separated from Y given Z if it is not connected.

A positive distribution is one that does not contain zero
probabilities.

X is independent Z given Z for all positive distributions iff X
is separated from Y given Z
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Canonical Representations

@ The parameters of a graphical model are the numbers that
define the model.

@ A belief network is a canonical representation: given the
structure and the distribution, the parameters are uniquely
determined.

@ A Markov random field is not a canonical representation.
Many different parameterizations result in the same
distribution.

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 9.3 11/23



Representations of Conditional Probabilities

There are many representations of conditional probabilities and
factors:
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Representations of Conditional Probabilities

There are many representations of conditional probabilities and

factors:
@ Tables
@ Decision Trees
@ Rules
@ Weighted Logical Formulae
@ Noisy-or
@ Logistic Function
@ Neural network
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Tabular Representation

A B C D Prob
true true true true | 0.9
true true true false | 0.1
true true false true | 0.9
true true false false | 0.1
true false true true | 0.2
true false true false | 0.8
true false false true | 0.2
P(D|A,B,C): true false false false | 0.8
false true true true | 0.3
false true true false | 0.7
false true false true | 0.4
false true false false | 0.6
false false true true | 0.3
false false true false | 0.7
false false false true | 0.4
false false false false | 0.6
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Decision Tree Representation

P(d | A, B, ()

.

true Wlse

8 Lc

true false true false

0.9 0.2 0.3 0.4
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Rule Representation

09: d<anb

02: d<aAN—b
03: d+« -aAc
04: d< —-aN—-c

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 9.3



Weighted Logical Formulae

d < ((aNbA ng)
V(aA-bAn)
V(maAcAnm)
V (ma A —c A n3z))

n; are independent:
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The robot is wet if it gets wet from rain or coffee or sprinkler or
another reason. They each have a probability of making the robot
wet — noisy-or.
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The robot is wet if it gets wet from rain or coffee or sprinkler or
another reason. They each have a probability of making the robot
wet — noisy-or.

B
&

X has Boolean parents Vi ...V, — k + 1 parameters pg ... pk.
invent Boolean variables Ap, A1, ..., Ay,
with probabilities P(Ag) = po and for i >0

P(Aij=true | Vi;=true) = p;
P(Ai=true | Vi=false) =0
if 3i A; is true

1
P(X | Ao, A, ..., Ak) = { 0 if Vi Ajis false
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Noisy-or: example

@ Suppose the robot could get wet from rain or coffee.

@ There is a probability that it gets wet from rain if it rains, and
a probability that it gets wet from coffee if it has coffee, and a
probability that it gets wet for other reasons.
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Noisy-or: example

@ Suppose the robot could get wet from rain or coffee.

@ There is a probability that it gets wet from rain if it rains, and
a probability that it gets wet from coffee if it has coffee, and a
probability that it gets wet for other reasons.

@ We could have:

P(wet_from_rain | rain) = 0.3,
P(wet_from_coffee | coffee) = 0.2
P(wet_for_other_reasons) = 0.1.
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Noisy-or: example

@ Suppose the robot could get wet from rain or coffee.

@ There is a probability that it gets wet from rain if it rains, and
a probability that it gets wet from coffee if it has coffee, and a
probability that it gets wet for other reasons.

@ We could have:
P(wet_from_rain | rain) = 0.3,
P(wet_from_coffee | coffee) = 0.2
P(wet_for_other_reasons) = 0.1.

@ The robot is wet if it wet from rain, wet from coffee, or wet
for other reasons.

wet < wet_from_rain\ wet_from_coffe\ wet_for_other_reasons
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Logistic Functions

P(hle)=—p5—=—
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P(h A e)
P(hAe)+ P(—hAe)
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Logistic Functions
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Logistic Functions

P(hle)=—p5—=—

P(h A e)
P(hAe)+ P(—hAe)
1
1+ P(=hAe)/P(hAe)
1
1 + ¢~ log P(hAe)/P(—hAe)
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Logistic Functions

P(hle)=—p5—=—

P(h A e)
P(hAe)+ P(—hAe)
1
1+ P(=hne)/P(hAe)
1
T 1+ e logP(hne)/P(=hne)
= sigmoid(log odds(h | €))

1
sigmoid(x) = T

P(h A e)
P(—h A e€)

odds(h | e) =
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Logistic Functions

A conditional probability is the sigmoid of the log-odds.

1 T
0.9t
0.8}
0.7t
0.6t
0.5}
0.4} ]
0.3F ]
0.2+ N
0.1F ]

0 I

-10 -5 0 5 10

1
SIngId(X) = m

A logistic function is the sigmoid of a linear function.
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Logistic Representation of Conditional Probability

P(d | A, B, C) = sigmoid(0.9" x A B
+02Tx A% (1-B)
+03Tx(1—-A)xC
+04Tx(1-A) x(1-0))

where 0.91 is sigmoid—1(0.9).
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Logistic Representation of Conditional Probability

P(d | A, B, C) = sigmoid(0.9" x Ax B
+02Tx A% (1-B)
+03Tx(1—-A)xC
+04Tx(1-A) x(1-0))

where 0.91 is sigmoid—1(0.9).

P(d | A, B, C) = sigmoid(0.4"
+(0.2T —0.47) % A

+(0.9" —02N «x Ax B
+ ...
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Neural Network

@ Build a neural network to predict D from A, B, C
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Neural Network

@ Build a neural network to predict D from A, B, C
@ A neural network tries to predict expected values

@ The expected value of a variable with domain {0, 1} is its
probability.
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Neural Network

@ Build a neural network to predict D from A, B, C

@ A neural network tries to predict expected values

@ The expected value of a variable with domain {0, 1} is its
probability.
Typically use a sigmoid activation at the root, and optimize
with log likelihood.
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Neural Network

@ Build a neural network to predict D from A, B, C
@ A neural network tries to predict expected values

@ The expected value of a variable with domain {0, 1} is its
probability.
Typically use a sigmoid activation at the root, and optimize
with log likelihood.
— such a neural network is a logistic regression model with
learned features

@ For other discrete variables, the expected value is not the
probability.
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Neural Network

@ Build a neural network to predict D from A, B, C
@ A neural network tries to predict expected values

@ The expected value of a variable with domain {0, 1} is its
probability.
Typically use a sigmoid activation at the root, and optimize
with log likelihood.
— such a neural network is a logistic regression model with
learned features

@ For other discrete variables, the expected value is not the
probability.
We create a Boolean ({0,1}) variable for each value —
indicator variable = having an output for each value
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Neural Network

@ Build a neural network to predict D from A, B, C
@ A neural network tries to predict expected values

@ The expected value of a variable with domain {0, 1} is its
probability.
Typically use a sigmoid activation at the root, and optimize
with log likelihood.
— such a neural network is a logistic regression model with
learned features

@ For other discrete variables, the expected value is not the
probability.
We create a Boolean ({0,1}) variable for each value —
indicator variable = having an output for each value

@ For other domains, a Bayesian neural network can represent
the distribution over the outputs (not just a point prediction).
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