
Markov chains

A Markov chain is a special sort of belief network:

S0 S1 S2 S3 S4

What probabilities need to be specified?

P(S0) specifies initial conditions

P(Si+1 | Si ) specifies the dynamics

What independence assumptions are made?

P(Si+1 | S0, . . . ,Si ) = P(Si+1 | Si ).

Often St represents the state at time t.
The state encodes all of the information about the past that
can affect the future.

“The future is independent of the past given the state.”
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Stationary Markov chain

A stationary Markov chain is when for all i > 0, i ′ > 0,
P(Si+1 | Si ) = P(Si ′+1 | Si ′).

We specify P(S0) and P(Si+1 | Si ). Same parameters for each
i .
I Simple model, easy to specify
I Often the natural model
I The network can extend indefinitely

A stationary distribution is a distribution over states such that
for ever state s, P(Si+1=s) = P(Si=s).

Under reasonable assumptions, P(Sk) will approach the
stationary distribution as k →∞.
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Stationary Distribution

A distribution over states, P is a stationary distribution if for
each state s, P(Si+1=s) = P(Si=s).

Every Markov chain has a stationary distribution.

A Markov chain is ergodic if, for any two states s1 and s2,
there is a non-zero probability of eventually reaching s2 from
s1.

A state in a Markov chain is periodic if there is a temporal
regularity in visiting that state; it has period n if the difference
of times when visiting the state is divisible by n.
A Markov chain is aperiodic if all states have a only period of
1.

An ergodic and aperiodic Markov chain has a unique
stationary distribution P and
P(s) = limi→∞ P(Si = s) — equilibrium distribution
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Pagerank

Consider the Markov chain:

Domain of Si is the set of all web pages

P(S0) is uniform; P(S0 = pj) = 1/N

P(Si+1 = pj | Si = pk)

= (1− d)/N + d ∗



1/nk if pk links to pj
1/N if pk has no links
0 otherwise

where there are N web pages

and nk links from page pk

d ≈ 0.85 is the probability someone keeps surfing web

This Markov chain converges to a stationary distribution over
web pages (original P(Si ) for i = 52 for 24 million pages and
322 million links):
Pagerank - basis for Google’s initial search engine
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Simple Language Models: set-of-words

Sentence: w1,w2,w3, . . . .
Set-of-words model:

“aardvark” “zzz”“a” ...

Each variable is Boolean: true when word is in the sentence
and false otherwise.

What probabilities are provided?
I P(”a”), P(”aardvark”), . . . , P(”zzz”)

How do we condition on the question “how can I phone my
phone”?
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Naive Bayes Classifier: User’s request for help

H

"able" "absent" "add" "zoom". . .

H is the help page the user is interested in.

What probabilities are required?

P(hi ) for each help page hi . The user is interested in one best
web page, so

∑
i P(hi ) = 1.

P(wj | hi ) for each word wj given page hi . There can be
multiple words used in a query.

Given a help query: condition on the words in the query and
display the most likely help page.
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Simple Language Models: bag-of-words

Sentence: w1,w2,w3, . . . ,wn.
Bag-of-words or unigram:

W2 ...W3 WnW1

Domain of each variable is the set of all words.

What probabilities are provided?
I P(wi ) is a distribution over words for each position

How do we condition on the question “how can I phone my
phone”?
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Simple Language Models: bigram

Sentence: w1,w2,w3, . . . ,wn.
bigram:

W2 ...W3 WnW1

Domain of each variable is the set of all words.

What probabilities are provided?
I P(wi | wi−1) is a distribution over words for each position

given the previous word

How do we condition on the question “how can I phone my
phone”?
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Simple Language Models: trigram

Sentence: w1,w2,w3, . . . ,wn.
trigram:

W2 ...W3 WnW1 W4

Domain of each variable is the set of all words.

What probabilities are provided?

P(wi | wi−1,wi−2)

N-gram

P(wi | wi−1, . . .wi−n+1) is a distribution over words given the
previous n − 1 words
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W2 ...W3 WnW1 W4

Domain of each variable is the set of all words.
What probabilities are provided?

P(wi | wi−1,wi−2)

N-gram

P(wi | wi−1, . . .wi−n+1) is a distribution over words given the
previous n − 1 words
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Logic, Probability, Statistics, Ontology over time

From: Google Books Ngram Viewer
(https://books.google.com/ngrams)
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Topic Model

tools food topics

"nut" "tuna""bolt" words

fish

“shark”“salmon”

finance
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Google’s rephil

900,000 topics

"Aaron's 
beard" "zzz""aardvark" 12,000,000 words...

350,000,000 links

...
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Predictive Typing and Error Correction

W2 ...W1

L11 Lk1L21 ... L12 Lk2L22 ...

W3

L13 Lk3L23 ...

domain(Wi ) = {”a”, ”aarvark”, . . . , ”zzz”, ”⊥”, ”?”}
domain(Lji ) = {”a”, ”b”, ”c”, . . . , ”z”, ”1”, ”2”, . . . }
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Beyond N-grams

A person with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple syntax diagram:

s

np vp

pp

np

npa person

with

a big hairy cat

drank

the cold milk
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Hidden Markov Model

A Hidden Markov Model (HMM) is a belief network:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

S5

The probabilities that need to be specified:

P(S0) specifies initial conditions

P(Si+1 | Si ) specifies the dynamics

P(Oi | Si ) specifies the sensor model
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Filtering

Filtering:

P(Si | o0, . . . , oi )

What is the current belief state based on the observation history?

Observe O0, query S0. P(S0 | o0)

then observe O1, query S1. P(S1 | o0, o1)

then observe O2, query S2. P(S2 | o0, o1, o2)

. . .

P(Si | o0, . . . , oi ) ∝ P(oi | Sio0, . . . , oi−1)P(Si | o0, . . . , oi−1)

= P(oi | Si )
∑
Si−1

P(Si | Si−1)P(si−1 | o0, . . . , oi−1)
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Example: localization

Suppose a robot wants to determine its location based on its
actions and its sensor readings: Localization

This can be represented by the augmented HMM:

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3
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Example localization domain

Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doors at positions: 2, 4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must determine
where it is.
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Example Sensor Model

P(Observe Door | At Door) = 0.8

P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

P(loct+1 = L | actiont = goRight ∧ loct = L) = 0.1

P(loct+1 = L + 1 | actiont = goRight ∧ loct = L) = 0.8

P(loct+1 = L + 2 | actiont = goRight ∧ loct = L) = 0.074

P(loct+1 = L′ | actiont = goRight ∧ loct = L) = 0.002 for any
other location L′.
I All location arithmetic is modulo 16.
I The action goLeft works the same but to the left.
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Combining sensor information

Example: we can combine information from a light sensor and
the door sensor Sensor Fusion

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

St robot location at time t
Dt door sensor value at time t
Lt light sensor value at time t
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