@ A Markov chain is a special sort of belief network:

OROaOnsOnd®

What probabilities need to be specified?
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@ A Markov chain is a special sort of belief network:

OROaOnsOnd®

What probabilities need to be specified?
e P(Sp) specifies initial conditions
o P(Si+1 ] Si) specifies the dynamics

What independence assumptions are made?
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@ A Markov chain is a special sort of belief network:

OROaOnsOnd®

What probabilities need to be specified?
e P(So) specifies initial conditions
o P(Si+1 ] Si) specifies the dynamics
What independence assumptions are made?
 P(Sit1] So,---,Si)=P(Si+1 ] Si).
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@ A Markov chain is a special sort of belief network:

OROaOnsOnd®

What probabilities need to be specified?
e P(So) specifies initial conditions
o P(Si+1 ] Si) specifies the dynamics
What independence assumptions are made?
 P(Sit1] So,---,Si)=P(Si+1 ] Si).

o Often S; represents the state at time t.
The state encodes all of the information about the past that

can affect the future.
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@ A Markov chain is a special sort of belief network:

OROaOnsOnd®

What probabilities need to be specified?
e P(So) specifies initial conditions
o P(Si+1 ] Si) specifies the dynamics
What independence assumptions are made?
 P(Sit1] So,---,Si)=P(Si+1 ] Si).

o Often S; represents the state at time t.
The state encodes all of the information about the past that

can affect the future.
@ “The future is independent of the past given the state.”
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Stationary Markov chain

@ A stationary Markov chain is when for all i > 0, i’ > 0,
P(Sit1| Si) = P(Sirq1 | Sir).
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Stationary Markov chain

@ A stationary Markov chain is when for all i > 0, i’ > 0,
P(Siv1 | Si) = P(Sir1 | Si).

o We specify P(Sp) and P(Sit+1 | Si). Same parameters for each
i
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Stationary Markov chain

@ A stationary Markov chain is when for all i > 0, i’ > 0,
P(Sit1 | Si) = P(Sir+1 | Si).
o We specify P(Sp) and P(Sit+1 | Si). Same parameters for each
i
» Simple model, easy to specify
» Often the natural model
» The network can extend indefinitely
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Stationary Markov chain

@ A stationary Markov chain is when for all i > 0, i’ > 0,
P(Sit1 | Si) = P(Sir+1 | Si).
o We specify P(Sp) and P(Sit+1 | Si). Same parameters for each
i
» Simple model, easy to specify
> Often the natural model
» The network can extend indefinitely
@ A stationary distribution is a distribution over states such that
for ever state s, P(Si+1=s) = P(Si=s).
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Stationary Markov chain

@ A stationary Markov chain is when for all i > 0, i’ > 0,
P(Siv1 | Si) = P(Sir+1 | Si).
o We specify P(Sp) and P(Sit+1 | Si). Same parameters for each
i
» Simple model, easy to specify
» Often the natural model
» The network can extend indefinitely
@ A stationary distribution is a distribution over states such that
for ever state s, P(Si+1=s) = P(Si=s).
@ Under reasonable assumptions, P(Sk) will approach the
stationary distribution as kK — .
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Stationary Distribution

@ A distribution over states, P is a stationary distribution if for
each state s, P(S;11=s) = P(S;=s).
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Stationary Distribution

@ A distribution over states, P is a stationary distribution if for
each state s, P(S;11=s) = P(S;=s).

@ Every Markov chain has a stationary distribution.
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Stationary Distribution

@ A distribution over states, P is a stationary distribution if for
each state s, P(Si+1=s) = P(Si=s).

@ Every Markov chain has a stationary distribution.

@ A Markov chain is ergodic if, for any two states s; and sp,
there is a non-zero probability of eventually reaching s, from
S51.
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Stationary Distribution

@ A distribution over states, P is a stationary distribution if for
each state s, P(Si+1=s) = P(Si=s).
@ Every Markov chain has a stationary distribution.

@ A Markov chain is ergodic if, for any two states s; and sp,
there is a non-zero probability of eventually reaching s, from
S51.

@ A state in a Markov chain is periodic if there is a temporal
regularity in visiting that state; it has period n if the difference
of times when visiting the state is divisible by n.

A Markov chain is aperiodic if all states have a only period of
1.
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Stationary Distribution

@ A distribution over states, P is a stationary distribution if for
each state s, P(Si+1=s) = P(Si=s).
@ Every Markov chain has a stationary distribution.

@ A Markov chain is ergodic if, for any two states s; and sp,
there is a non-zero probability of eventually reaching s, from
S51.

@ A state in a Markov chain is periodic if there is a temporal
regularity in visiting that state; it has period n if the difference
of times when visiting the state is divisible by n.

A Markov chain is aperiodic if all states have a only period of
1.

@ An ergodic and aperiodic Markov chain has a unique
stationary distribution P and
P(s) = limj_ o P(S; = s) — equilibrium distribution
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Pagerank

Consider the Markov chain:

@ Domain of §; is the set of all web pages
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Si+1=pj | Si = p«)

— (1—d)/N+d+x

where there are N web pages

@ d ~ 0.85 is the probability someone keeps surfing web
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Siv1=pj | Si = pk)
if pi links to p;
—(1—d)/N+dx

where there are N web pages

@ d ~ 0.85 is the probability someone keeps surfing web
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Siv1=pj | Si = pk)
1/ni if pi links to p;
— (1—d)/N+d+

where there are N web pages and ny links from page px

@ d ~ 0.85 is the probability someone keeps surfing web
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Siv1=pj | Si = pk)
1/ni if pi links to p;
=(1—-d)/N+dx if px has no links

where there are N web pages and ny links from page px

@ d ~ 0.85 is the probability someone keeps surfing web
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Siv1=pj | Si = pk)
1/ni if pi links to p;
=(1—-d)/N+dx«<{ 1/N if pg has no links

where there are N web pages and ny links from page px

@ d ~ 0.85 is the probability someone keeps surfing web
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Sit1=pj | Si = p«)
1/ni if pi links to p;
=(1—-d)/N+dx«<{ 1/N if pg has no links
0 otherwise

where there are N web pages and ny links from page px

@ d ~ 0.85 is the probability someone keeps surfing web
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Consider the Markov chain:
@ Domain of §; is the set of all web pages
e P(So) is uniform; P(So = pj) = 1/N

P(Sit1=pj | Si = p«)
1/ni if pi links to p;
=(1—-d)/N+dx«<{ 1/N if pg has no links
0 otherwise

where there are N web pages and ny links from page px
@ d ~ 0.85 is the probability someone keeps surfing web

@ This Markov chain converges to a stationary distribution over
web pages (original P(S;) for i = 52 for 24 million pages and
322 million links):

Pagerank - basis for Google's initial search engine
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Simple Language Models: set-of-words

Sentence: wy, wyp, ws, .. ..
Set-of-words model:

‘ “aardvark” ‘

@ Each variable is Boolean: true when word is in the sentence
and false otherwise.
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Simple Language Models: set-of-words

Sentence: wy, wyp, ws, .. ..
Set-of-words model:

‘ “aardvark” ‘

@ Each variable is Boolean: true when word is in the sentence
and false otherwise.
@ What probabilities are provided?
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Simple Language Models: set-of-words

Sentence: wy, wyp, ws, .. ..
Set-of-words model:

‘ “aardvark” ‘

@ Each variable is Boolean: true when word is in the sentence
and false otherwise.
@ What probabilities are provided?
> P("a"), P("aardvark™), ..., P("zzz")
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Simple Language Models: set-of-words

Sentence: wy, wyp, ws, .. ..
Set-of-words model:

‘ “aardvark” ‘

@ Each variable is Boolean: true when word is in the sentence
and false otherwise.
@ What probabilities are provided?
> P("a"), P("aardvark™), ..., P("zzz")
@ How do we condition on the question “how can | phone my
phone”?
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Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
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Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?
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Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

@ P(h;) for each help page h;. The user is interested in one best
web page, so >, P(h;) = 1.
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Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

@ P(h;) for each help page h;. The user is interested in one best
web page, so >, P(h;) = 1.

e P(w; | hj) for each word w; given page h;. There can be
multiple words used in a query.
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Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

@ P(h;) for each help page h;. The user is interested in one best
web page, so >, P(h;) = 1.

e P(w; | hj) for each word w; given page h;. There can be
multiple words used in a query.

@ Given a help query:
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Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

@ P(h;) for each help page h;. The user is interested in one best
web page, so >, P(h;) = 1.

e P(w; | hj) for each word w; given page h;. There can be
multiple words used in a query.

@ Given a help query: condition on the words in the query and
display the most likely help page.
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Simple Language Models: bag-of-words

Sentence: wiy, wa, W3, ..., Wy.
Bag-of-words or unigram:

ORORORNO

@ Domain of each variable is the set of all words.
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Simple Language Models: bag-of-words

Sentence: wiy, wa, W3, ..., Wy.
Bag-of-words or unigram:

ORORORNO

@ Domain of each variable is the set of all words.
@ What probabilities are provided?
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Simple Language Models: bag-of-words

Sentence: wiy, wa, W3, ..., Wy.
Bag-of-words or unigram:

ORORORNO

@ Domain of each variable is the set of all words.
@ What probabilities are provided?
> P(w;) is a distribution over words for each position
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Simple Language Models: bag-of-words

Sentence: wiy, wa, W3, ..., Wy.
Bag-of-words or unigram:

ORORORNO

@ Domain of each variable is the set of all words.
@ What probabilities are provided?

> P(w;) is a distribution over words for each position

@ How do we condition on the question “how can | phone my
phone”?
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Simple Language Models: bigram

Sentence: wy, wa, w3, ..., Wy.

" @O®@r @

@ Domain of each variable is the set of all words.
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Simple Language Models: bigram

Sentence: wy, wa, w3, ..., Wy.

" @O®@r @

@ Domain of each variable is the set of all words.
@ What probabilities are provided?
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Simple Language Models: bigram

Sentence: wy, wa, w3, ..., Wy.

" @O®@r @

@ Domain of each variable is the set of all words.
@ What probabilities are provided?

» P(w; | wi_1) is a distribution over words for each position
given the previous word
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Simple Language Models: bigram

Sentence: wy, wa, w3, ..., Wy.

" @O®@r @

@ Domain of each variable is the set of all words.
@ What probabilities are provided?
» P(w; | wi_1) is a distribution over words for each position
given the previous word

@ How do we condition on the question “how can | phone my
phone”?
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Simple Language Models: trigram

Sentence: wy, wo, ws, ..., wp.

trigram:
@ @ @ @ ...—>

Domain of each variable is the set of all words.
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Simple Language Models: trigram

Sentence: wy, wo, ws, ..., wp.

trigram:
@ @ @ @ ...—>

Domain of each variable is the set of all words.
What probabilities are provided?
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Simple Language Models: trigram

Sentence: wy, wo, ws, ..., wp.
trigram:

DECSTSONRD

Domain of each variable is the set of all words.
What probabilities are provided?

o P(w; | wi—1,wj_2)
N-gram

@ P(w;| wj_1,...wj_n41) is a distribution over words given the
previous n — 1 words
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Logic, Probability, Statistics, Ontology over time

1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

From: Google Books Ngram Viewer
(https://books.google.com/ngrams)
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https://books.google.com/ngrams

Topic Model
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Google's rephil

900,000 topics

350,000,000 links
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Predictive Typing and Error Correction

S

ED G- (W@ () ()-()

domain(W;) = {"a"," aarvark”, ..., " zzz" " 1" " 7"}
domaln( ) {H ”,”b”,”C”7...,”Z”,”l”,”2”7...}
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Beyond N-grams

@ A person with a big hairy cat drank the cold milk.
@ Who or what drank the milk?
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Beyond N-grams

@ A person with a big hairy cat drank the cold milk.
@ Who or what drank the milk?

Simple syntax diagram:

) he cold milk
with  np

/¢\\A

a big  hairy cat
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Hidden Markov Model

e A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:
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Hidden Markov Model

e A Hidden Markov Model (HMM) is a belief network:

CAUNCRCNTNC

The probabilities that need to be specified:
@ P(Sp) specifies initial conditions
@ P(Si+1 | Si) specifies the dynamics
e P(O; | S;) specifies the sensor model

Artificial Intelligence, Lecture 9.5

©D.L. Poole and A.K. Mackworth 2010-2020



Filtering:
P(S,' ‘ og, - - .,O,')

What is the current belief state based on the observation history?

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 9.5



Filtering:
P(S,' ‘ og, - - .,O,')

What is the current belief state based on the observation history?
@ Observe Oy, query So. P(So | o)
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Filtering:
P(S,' ‘ og, - - .,O,')

What is the current belief state based on the observation history?
@ Observe Oy, query So. P(So | o)
@ then observe O1, query S1. P(S1 | 0o, 01)
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Filtering:
P(S,‘ ‘ og, - - .,O,')

What is the current belief state based on the observation history?
@ Observe Oy, query So. P(So | o)
@ then observe O1, query S1. P(S1 | 0o, 01)
@ then observe Oy, query So.  P(S2 | 0o, 01, 02)
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Filtering:
P(S,‘ ‘ og, - - .,O,')

What is the current belief state based on the observation history?
@ Observe Oy, query So. P(So | o)
@ then observe O1, query S1. P(S1 | 0o, 01)
@ then observe Oy, query So.  P(S2 | 0o, 01, 02)

P(S, ‘ Oo,...,O;) X P(O,‘ | S,'Oo,...,O;_l)P(S,' | op, - - .,O,'_1)
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Filtering:
P(S,‘ ‘ og, - - .,O,')

What is the current belief state based on the observation history?
@ Observe Oy, query So. P(So | o)
@ then observe O1, query S1. P(S1 | 0o, 01)
@ then observe Oy, query So.  P(S2 | 0o, 01, 02)

P(S, ‘ Oo,...,O;) X P(O,‘ | S,'Oo,...,O;_l)P(S,' | op, - - .,O,'_1)
= P(oi | Si)
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Filtering:
P(S,‘ ‘ og, - - .,O,')

What is the current belief state based on the observation history?
@ Observe Oy, query So. P(So | o)
@ then observe O1, query S1. P(S1 | 0o, 01)
@ then observe Oy, query So.  P(S2 | 0o, 01, 02)

P(S, ‘ Oo,...,O;) X P(O,‘ | S,'Oo,...,O;_l)P(S,' | op, - - .,O,'_1)

= P(oi | S))Y _ P(Si | Si-1)P(si-1 ] 0, .- ., 0i-1)
Si—1
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Example: localization

@ Suppose a robot wants to determine its location based on its
actions and its sensor readings: Localization

@ This can be represented by the augmented HMM:

@ @@ @
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Example localization domain

@ Circular corridor, with 16 locations:

1 2 3 4 5

0 6 7 8 9 10 11 12 13 14 15
@ Doors at positions: 2, 4, 7, 11.

@ Noisy Sensors

@ Stochastic Dynamics

@ Robot starts at an unknown location and must determine

where it is.
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Example Sensor Model

e P(Observe Door | At Door) = 0.8
e P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

P(locty1 = L | actions = goRight A loc; = L) = 0.1

P(loct4+1 = L+ 1| action; = goRight A loc; = L) = 0.8
P(loct4+1 = L+ 2 | action; = goRight N loc; = L) = 0.074
P(loct+1 = L' | actions = goRight A loc; = L) = 0.002 for any
other location L.

» All location arithmetic is modulo 16.
» The action goleft works the same but to the left.
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Combining sensor information

@ Example: we can combine information from a light sensor and
the door sensor Sensor Fusion

S; robot location at time t
D; door sensor value at time t
L; light sensor value at time t
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