
Goals and Preferences

Alice . . . went on “Would you please tell me, please, which
way I ought to go from here?”
“That depends a good deal on where you want to get to,”
said the Cat.
“I don’t much care where —” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll, 1832–1898
Alice’s Adventures in Wonderland, 1865

Chapter 6

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.1 1 / 43



Learning Objectives

At the end of the class you should be able to:

justify the use and semantics of utility

estimate the utility of an outcome

build a decision network for a domain

compute the optimal policy of a decision network
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Preferences

Actions result in outcomes

Agents have preferences over outcomes

A rational agent will do the action that has the best
outcome for them

Sometimes agents don’t know the outcomes of the
actions, but they still need to compare actions

Agents have to act.
(Doing nothing is (often) an action).
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Preferences Over Outcomes

If o1 and o2 are outcomes

o1 � o2 means o1 is at least as desirable as o2.

o1 ∼ o2 means o1 � o2 and o2 � o1.

o1 � o2 means o1 � o2 and o2 6� o1
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Lotteries

An agent may not know the outcomes of its actions, but
only have a probability distribution of the outcomes.

A lottery is a probability distribution over outcomes. It is
written

[p1 : o1, p2 : o2, . . . , pk : ok ]

where the oi are outcomes and pi ≥ 0 such that∑
i

pi = 1

The lottery specifies that outcome oi occurs with
probability pi .

When we talk about outcomes, we will include lotteries.
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Properties of Preferences

Completeness: Agents have to act, so they must have
preferences:

∀o1∀o2 o1 � o2 or o2 � o1

Transitivity: Preferences must be transitive:

if o1 � o2 and o2 � o3 then o1 � o3

(Similarly for other mixtures of � and �.)
Rationale: otherwise o1 � o2 and o2 � o3 and o3 � o1.
If they are prepared to pay to get o2 instead of o3,
and are happy to have o1 instead of o2,
and are happy to have o3 instead of o1
−→ money pump.
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Properties of Preferences (cont.)

Monotonicity: An agent prefers a larger chance of getting a
better outcome than a smaller chance:

If o1 � o2 and p > q then

[p : o1, 1− p : o2] � [q : o1, 1− q : o2]
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Consequence of axioms

Suppose o1 � o2 and o2 � o3. Consider whether the
agent would prefer
I o2
I the lottery [p : o1, 1− p : o3]

for different values of p ∈ [0, 1].

Plot which one is preferred as a function of p:

o2 -

lottery -
0 1
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Properties of Preferences (cont.)

Continuity: Suppose o1 � o2 and o2 � o3, then there exists a
p ∈ [0, 1] such that

o2 ∼ [p : o1, 1− p : o3]
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Properties of Preferences (cont.)

Decomposability: (no fun in gambling). An agent is indifferent
between lotteries that have same probabilities and outcomes.
This includes lotteries over lotteries. For example:

[p : o1, 1− p : [q : o2, 1− q : o3]]

∼ [p : o1, (1− p)q : o2, (1− p)(1− q) : o3]
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Properties of Preferences (cont.)

Substitutability: if o1 ∼ o2 then the agent is indifferent
between lotteries that only differ by o1 and o2:

[p : o1, 1− p : o3] ∼ [p : o2, 1− p : o3]
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Alternative Axiom for Substitutability

Substitutability: if o1 � o2 then the agent weakly prefers
lotteries that contain o1 instead of o2, everything else being
equal.
That is, for any number p and outcome o3:

[p : o1, (1− p) : o3] � [p : o2, (1− p) : o3]
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What we would like

We would like a measure of preference that can be
combined with probabilities. So that

value([p : o1, 1− p : o2])

= p × value(o1) + (1− p)× value(o2)

Money does not act like this.
What would you prefer

$1, 000, 000 or [0.5 : $0, 0.5 : $2, 000, 000]?

It may seem that preferences are too complex and
muti-faceted to be represented by single numbers.
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Theorem

If preferences follow the preceding properties, then preferences
can be measured by a function

utility : outcomes → [0, 1]

such that

o1 � o2 if and only if utility(o1) ≥ utility(o2).

Utilities are linear with probabilities:

utility([p1 : o1, p2 : o2, . . . , pk : ok ])

=
k∑

i=1

pi × utility(oi)
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Proof

If all outcomes are equally preferred,

set utility(oi) = 0
for all outcomes oi .

Otherwise, suppose the best outcome is best and the
worst outcome is worst.

For any outcome oi , define utility(oi) to be the number
ui such that

oi ∼ [ui : best, 1− ui : worst]

This exists by the Continuity property.
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Proof (cont.)

Suppose o1 � o2 and utility(oi) = ui , then by
Substitutability,

[u1 : best, 1− u1 : worst]

�

[u2 : best, 1− u2 : worst]

Which, by completeness and monotonicity implies
u1 ≥ u2.
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Proof (cont.)

Suppose p = utility([p1 : o1, p2 : o2, . . . , pk : ok ]).

Suppose utility(oi) = ui . We know:

oi ∼ [ui : best, 1− ui : worst]

By substitutability, we can replace each oi by
[ui : best, 1− ui : worst], so

p = utility( [ p1 : [u1 : best, 1− u1 : worst]

. . .

pk : [uk : best, 1− uk : worst]])
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By decomposability, this is equivalent to:

p = utility( [ p1u1 + · · ·+ pkuk

: best,

p1(1− u1) + · · ·+ pk(1− uk)

: worst]])

Thus, by definition of utility,

p = p1 × u1 + · · ·+ pk × uk
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Utility as a function of money

$0 $2,000,000

Utility

0

1

Risk averse

Risk
 neu

tra
l

Risk seeking

c©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 9.1 19 / 43



Possible utility as a function of money

Someone who really wants a toy worth $30, but who would
also like one worth $20:

10 20 30 40 50 60 70 80 90 100
0

1

dollars

utility
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Factored Representation of Utility

Suppose the outcomes can be described in terms of
features X1, . . . ,Xn.

An additive utility is one that can be decomposed into set
of factors:

u(X1, . . . ,Xn) = f1(X1) + · · ·+ fn(Xn).

This assumes additive independence.

Strong assumption: contribution of each feature doesn’t
depend on other features.

Many ways to represent the same utility:
— a number can be added to one factor as long as it is
subtracted from others.
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Additive Utility

An additive utility has a canonical representation:

u(X1, . . . ,Xn) = w1 × u1(X1) + · · ·+ wn × un(Xn).

If besti is the best value of Xi , ui(Xi=besti) = 1.
If worsti is the worst value of Xi , ui(Xi=worsti) = 0.

wi are weights,
∑

i wi = 1.
The weights reflect the relative importance of features.

We can determine weights by comparing outcomes.

w1 =

u(best1, x2, . . . , xn)− u(worst1, x2, . . . , xn).

for any values x2, . . . , xn of X2, . . . ,Xn.
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General Setup for Additive Utility

Suppose there are:
multiple users
multiple alternatives to choose among, e.g., hotel1,. . .
multiple criteria upon which to judge, e.g., rate, location
utility is a function of

users and alternatives
fact(crit, alt) is the fact about the domain value of
criteria crit for alternative alt.
E.g., fact(rate, hotel1) is the room rate for hotel#1,
which is $125 per night.
score(val , user , crit) gives the score of the domain value
for user on criteria crit.

utility(user , alt) =
∑
crit

weight(user , crit)×
score(fact(crit, alt), user , crit)

for user , alternative alt, criteria crit
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Complements and Substitutes

Often additive independence is not a good assumption.

Values x1 of feature X1 and x2 of feature X2 are
complements if having both is better than the sum of the
two.

Values x1 of feature X1 and x2 of feature X2 are
substitutes if having both is worse than the sum of the
two.

Example: on a holiday
I An excursion for 6 hours North on day 3.
I An excursion for 6 hours South on day 3.

Example: on a holiday
I A trip to a location 3 hours North on day 3
I The return trip for the same day.
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Generalized Additive Utility

A generalized additive utility can be written as a sum of
factors:

u(X1, . . . ,Xn) = f1(X1) + · · ·+ fk(Xk)

where Xi ⊆ {X1, . . . ,Xn}.
An intuitive canonical representation is difficult to find.

It can represent complements and substitutes.
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Utility and time

Would you prefer $1000 today or $1000 next year?

What price would you pay now to have an eternity of
happiness?

How can you trade off pleasures today with pleasures in
the future?
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Pascal’s Wager (1670)

Decide whether to believe in God.

Believe in 
God

Utility

God 
Exists
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Utility and time

How would you compare the following sequences of
rewards (per week):

A: $1000000, $0, $0, $0, $0, $0,. . .
B: $1000, $1000, $1000, $1000, $1000,. . .
C: $1000, $0, $0, $0, $0,. . .
D: $1, $1, $1, $1, $1,. . .
E: $1, $2, $3, $4, $5,. . .
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Rewards and Values

Suppose the agent receives a sequence of rewards
r1, r2, r3, r4, . . . in time. What utility should be assigned?
“Return” or “value”

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n
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Average vs Accumulated Rewards

Agent goes on forever?

Agent gets stuck in "absorbing" 
state(s) with zero reward?

yes no

yes no
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Rewards and Values

Suppose the agent receives a sequence of rewards
r1, r2, r3, r4, . . . in time.

discounted return V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.
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Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
=

r1 + γ(r2 + γ(r3 + γ(r4 + . . . )))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

∝ γk/(1− γ)
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minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

∝ γk/(1− γ)
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Properties of the Discounted Rewards

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
At each time:
I with probability γ, agent keeps going
I otherwise agent stops

with return is

total reward is equivalent to discounting.

With an interest rate of i , a dollar now is worth 1 + i in a
year. So a dollar in a year is worth 1/(1 + i) now. γ can
be seen as 1/(1 + i) where i is interest rate.

γ should reflect an agent’s utility.
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Allais Paradox (1953)

What would you prefer:

A: $1m — one million dollars

B: lottery [0.10 : $2.5m, 0.89 : $1m, 0.01 : $0]

What would you prefer:

C: lottery [0.11 : $1m, 0.89 : $0]

D: lottery [0.10 : $2.5m, 0.9 : $0]

It is inconsistent with the axioms of preferences to have
A � B and D � C .

A,C: lottery [0.11 : $1m, 0.89 : X ]

B,D: lottery [0.10 : $2.5m, 0.01 : $0, 0.89 : X ]
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Framing Effects [Tversky and Kahneman]

A disease is expected to kill 600 people. Two alternative
programs have been proposed:

Program A: 200 people will be saved
Program B: probability 1/3: 600 people will be saved

probability 2/3: no one will be saved

Which program would you favor?

A disease is expected to kill 600 people. Two alternative
programs have been proposed:

Program C: 400 people will die
Program D: probability 1/3: no one will die

probability 2/3: 600 will die

Which program would you favor?
Tversky and Kahneman: 72% chose A over B.
22% chose C over D.
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Prospect Theory

$

psychological
value

GainsLosses

In mixed gambles, loss aversion causes extreme
risk-averse choices

In bad choices, diminishing responsibility causes risk
seeking.
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Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical
starting jobs. There are two jobs that are identical, except
that

job A gives a raise of $10000

job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin.
Andy takes job A, and Bobbie takes job B.
Now the company suggests they swap jobs with a $500 bonus.
Will they swap?

What does utility theory predict?
What does prospect theory predict?
Utility theory predicts they swap. Prospect theory predicts
they do not swap.
[From D. Kahneman, Thinking, Fast and Slow, 2011, p. 291.]
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Reference Points

Consider Anthony and Betty who (for argument) are
essentially the same except:

Anthony’s current wealth is $1 million.

Betty’s current wealth is $4 million.

They are both offered the choice between a gamble and a sure
thing:

Gamble: equal chance to end up owning $1 million or $4
million.

Sure Thing: own $2 million

What does expected utility theory predict?

What does prospect theory predict?
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Framing Effects

What do you think of Alan and Ben:

Alan: intelligent—industrious—impulsive—critical—
stubborn—envious

Ben: envious—stubborn—critical—impulsive—
industrious—intelligent

[From D. Kahneman, Thinking Fast and Slow, 2011, p. 82]
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Framing Effects

Suppose you had bought tickets for the theatre for $50.
When you got to the theatre, you had lost the tickets.
You have your credit card and can buy equivalent tickets
for $50. Do you buy the replacement tickets on your
credit card?

Suppose you had $50 in your pocket to buy tickets.
When you got to the theatre, you had lost the $50. You
have your credit card and can buy equivalent tickets for
$50. Do you buy the tickets on your credit card?

[From R.M. Dawes, Rational Choice in an Uncertain World, 1988.]
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The Ellsberg Paradox

Two bags:

Bag 1 40 white chips, 30 yellow chips, 30 green chips

Bag 2 40 white chips, 60 chips that are yellow or green

What do you prefer:

A: Receive $1m if a white or yellow chip is drawn
from bag 1

B: Receive $1m if a white or yellow chip is drawn
from bag 2

C: Receive $1m if a white or green chip is drawn
from bag 2

What about

D: Lottery [0.5 : B , 0.5 : C ]

However A and D should give same outcome, no matter what
the proportion in Bag 2.
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St. Petersburg Paradox

What if there is no “best” outcome?
Are utilities unbounded?

Suppose utilities are unbounded.

Then for any outcome oi there is an outcome oi+1 such
that u(oi+1) > 2u(oi).

Would the agent prefer o1 or the lottery [0.5 : o2, 0.5 : 0]?
where 0 is the worst outcome.

Is it rational to gamble o1 to on a coin toss to get o2?

Is it rational to gamble o2 to on a coin toss to get o3?

Is it rational to gamble o3 to on a coin toss to get o4?

What will eventually happen?
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Predictor Paradox

Two boxes:

Box 1: contains $10,000

Box 2: contains either $0 or $1m

You can either choose both boxes or just box 2.

The “predictor” has put $1m in box 2 if he thinks you will
take box 2 and $0 in box 2 if he thinks you will take both.

The predictor has been correct in previous predictions.

Do you take both boxes or just box 2?
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