Clustering / Unsupervised Learning

@ The target features are not given in the training examples

@ The aim is to construct a natural classification that can
be used to predict features of the data.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Clustering / Unsupervised Learning

@ The target features are not given in the training examples

@ The aim is to construct a natural classification that can
be used to predict features of the data.

@ The examples are partitioned in into clusters or classes.
Each class predicts feature values for the examples in the
class.

» In hard clustering each example is placed definitively in a
class.

» In soft clustering each example has a probability
distribution over its class.

@ Each clustering has a prediction error on the examples.
The best clustering is the one that minimizes the error.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm

The k-means algorithm is used for hard clustering.
Inputs:

@ training examples
@ the number of classes, k
Outputs:
@ a prediction of a value for each feature for each class

@ an assignment of examples to classes

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm formalized

@ E is the set of all examples
@ the input features are Xq,..., X,

X;(e) is the value of feature X; for example e.
@ there is a class for each integer i € {1,..., k}.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm formalized

@ E is the set of all examples

@ the input features are Xq,..., X,
X;(e) is the value of feature X; for example e.

@ there is a class for each integer i € {1,..., k}.
The k-means algorithm outputs
e function class : E — {1,..., k}.

class(e) = i means e is in class .
e prediction X;(i) for each feature X; and class i.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm formalized

@ E is the set of all examples
@ the input features are Xq,..., X,

X;(e) is the value of feature X; for example e.
@ there is a class for each integer i € {1,..., k}.

The k-means algorithm outputs
e function class : E — {1,..., k}.
class(e) = i means e is in class .

@ prediction)?J(/) for each feature X; and class /.

The sum-of-squares error for class and)?J(/) is

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm formalized

@ E is the set of all examples

@ the input features are Xq,..., X,
X;(e) is the value of feature X; for example e.
@ there is a class for each integer i € {1,..., k}.

The k-means algorithm outputs
e function class : E — {1,..., k}.
class(e) = i means e is in class .

@ prediction)?J(/) for each feature X; and class /.

The sum-of-squares error for class and)?J(/) is

3 (Rclasse)) - X(e))

ecE j=1

Aim: find class and prediction function that minimize
sum-of-squares error.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Minimizing the error

The sum-of-squares error for class and)A(J(/) is

ZZ((class(e)—Xj(e)>2.

ecE j=1

@ Given class, the X; that minimizes the sum-of-squares
error is

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Minimizing the error

The sum-of-squares error for class and)A(J(/) is

ZZ((class(e)—Xj(e)>2.

ecE j=1

@ Given class, the X; that minimizes the sum-of-squares
error is the mean value of X for that class.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Minimizing the error

The sum-of-squares error for class and)A(J(/) is

ZZ((class(e)—Xj(e)>2.

ecE j=1

@ Given class, the X; that minimizes the sum-of-squares
error is the mean value of X for that class.

e Given)Ag for each j, each example can be assigned to the
class that

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Minimizing the error

The sum-of-squares error for class and)A(J(/) is

ZZ((class(e)—Xj(e)>2.

ecE j=1

@ Given class, the X; that minimizes the sum-of-squares
error is the mean value of X for that class.

@ Given X; for each j, each example can be assigned to the
class that minimizes the error for that example.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm

Initially, randomly assign the examples to the classes.
Repeat the following two steps:

@ For each class i and feature X;,
T Ze:class(e):i)g(e)
<_

Xi(i) [{e: class(e) = i}|’

@ For each example e, assign e to the class / that minimizes
LS 2
> (Rl =x(e)) .
j=1

until the second step does not change the assignment of any
example.

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm

Sufficient statistics:
@ ccc] is the number of examples in class c,

@ fs[j, c] is the sum of the values for Xj(e) for examples in
class c.

then define pn(j, ¢), current estimate of)?J(c)

pn(j, c) =

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm

Sufficient statistics:
@ ccc] is the number of examples in class c,

@ fs[j, c] is the sum of the values for Xj(e) for examples in
class c.

then define pn(j, ¢), current estimate of)?J(c)

pn(j, c) = fs[j, c]/cc[c]

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm

Sufficient statistics:
@ ccc] is the number of examples in class c,

@ fs[j, c] is the sum of the values for Xj(e) for examples in
class c.

then define pn(j, ¢), current estimate of)?J(c)

pn(j, c) = fs[j, c]/cc[c]

class(e) =

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

k-means algorithm

Sufficient statistics:
@ ccc] is the number of examples in class c,

@ fs[j, c] is the sum of the values for Xj(e) for examples in
class c.

then define pn(j, ¢), current estimate of)?J(c)

pn(j, c) = fs[j, c]/cc[c]

class(e) = arg mcin Z (pn(j, c) — Xi(e))?

These can be updated in one pass through the training data.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

1. procedure k-means(Xs, Es, k)

2: Initialize fs and cc randomly (based on data)

3 def pn(j, c) = fs[j, c|/cc[c]

4. def class(e) = argmin. >, (pn(j,) — X;(e))?
5: repeat

6 fsn and ccn initialized to be all zero

7 for each example e € Es do

8 ¢ := class(e)

9

. cenfc]+ =1
10: for each feature X; € Xs do
11: fsn[j, c]+ = X;(e)
12: stable := (fsn=fs) and (ccn=cc)
13: fs := fsn
14: cc := ccn
15: until stable
16: return class, pn

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Example Data

10 .

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Random Assignment to Classes

10 %

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

Assign Each Example to Closest Mean

10 %

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 10/19

Ressign Each Example to Closest Mean

10 %

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 11/19

Properties of k-means

@ An assignment of examples to classes is stable if running
both the M step and the E step does not change the
assignment.

@ This algorithm will eventually converge to a stable local
minimum.

@ Any permutation of the labels of a stable assignment is
also a stable assignment.

@ It is not guaranteed to converge to a global minimum.
@ It is sensitive to the relative scale of the dimensions.

@ Increasing k can always decrease error until k is the
number of different examples.

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 12 /19

EM Algorithm

@ Used for soft clustering — examples are probabilistically
in classes.

@ k-valued random variable C

Model Data = Probabilities
X1 Xo Xz X4

t f t t P(XﬂC)
}2\‘ f t t f (X2|C)
f f t t (C)

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 13/19

EM Algorithm

M-step
X] X2 X3 X4 C | count /—\
: : : : : : P(C)
o) ’ P(X;IC
t f t t 1| 04 PEXé | Ci
t f t t 2 0.1 POGIC)
t f t t 3 0.5 P(X,IC)
E-step

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 14 /19

EM Algorithm Overview

@ Repeat the following two steps:
» E-step give the expected number of data points for the
unobserved variables based on the given probability

distribution.
» M-step infer the (maximum likelihood or maximum
aposteriori probability) probabilities from the data.

@ Start either with made-up data or made-up probabilities.

@ EM will converge to a local maxima.

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 15/19

Augmented Data — E step

Suppose k = 3, and dom(C) = {1,2,3}.
P(C - 1|X1 - t,XQ - f,X3 - t,X4 - t) - 0407
P(C=2[Xi=t.X =fXs=t,X =t)=0.121
P(C == 3‘X1 = t,X2 = f,X3 = t,X4 = t) = 0.472:
AlXi, ..., Xy, C]

X, X, Xs Xa C| Count|

X]_ X2 X3 X4 Count : : : : :
Do ; f t t 1| 407
t f t t | 100 t f 12.1
: . . : : ft t 3| 472

N

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 16 /19

Xl X2 X3 X4 C | Count

f | PD®EO®

12.1
f t t 3| 472

-+
N

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 17 /19

X1 Xo Xz X4 C | Count A
t

for e o1ar] & ®

f t t 2] 121
f t t 3| 472

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

17/19

EM sufficient statistics

@ cc, a k-valued array, cc[c] is the sum of the counts for
class=c.

e fc, a 3-dimensional array such that fc[i, v, c], is the sum
of the counts of the augmented examples t with
Xi(t) = val and class(t) = c.

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 18 /19

EM sufficient statistics

@ cc, a k-valued array, cc[c] is the sum of the counts for
class=c.

@ fc, a 3-dimensional array such that fc[i, v, c], is the sum
of the counts of the augmented examples t with
Xi(t) = val and class(t) = c.

@ The probabilites can be computed by:

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 18 /19

EM sufficient statistics

@ cc, a k-valued array, cc[c] is the sum of the counts for
class=c.

@ fc, a 3-dimensional array such that fc[i, v, c], is the sum
of the counts of the augmented examples t with
Xi(t) = val and class(t) = c.

@ The probabilites can be computed by:

o) - cclc]
P(C=c) |Es|
P(X; = v|C=c) = %

@©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2

1. procedure EM(Xs, Es, k)

2 cc[c] :=0; fe[i,v,c] :==0

3 repeat

4 cc_new|[c| := 0; fc_new[i,v,c] =0

5: for each example (v;,...,v,) € Es do

6: for each c € [1, k| do

7 dC::P(C:C|X1:V]_,...,Xn:Vn)
8 cc_new|[c| := cc_new|c] + dc

9 for each / € [1, n| do
10: fc_newl[i, v;, c| := fc_new[i, v;, c] + dc
11: stable := (cc ~ cc_new) and (fc ~ fc_new)
12: CC := cc_new
13: fc := fc_new
14: until stable
15: return cc,fc

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.2 19/19

