Learning Objectives

At the end of the class you should be able to:
@ derive Bayesian learning from first principles

@ explain how the Beta and Dirichlet distributions are used
for Bayesian learning.
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Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input
X = x given the training examples e:

p(Y|xne) = > P(YAm|xAe)

meM
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Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input
X = x given the training examples e:

p(Y|xne) = > P(YAm|xAe)

meM

= Y P(Y|mAxAe)P(m]|xAe)

meM
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Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input
X = x given the training examples e:

p(Y|xne) = > P(YAm|xAe)
= Y P(Y|mAxAe)P(m]|xAe)
= Y _P(Y|mAx)P(m]|e)

M is a set of mutually exclusive and covering models
(hypotheses).

@ What assumptions are made here?
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Learning Under Uncertainty

@ The posterior probability of a model m given examples e:

e| m)x P(m)
P(e)

P(m|e) = 2L

@ The likelihood, P(e | m), is the probability that model m
would have produced examples e.

@ The prior, P(m), encodes the learning bias

@ P(e) is a normalizing constant so the probabilities of the
models sum to 1.
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Plate Notation

@ Examples e = [ey, ..., ] are independent and identically
distributed (i.i.d.) given m if

k

P(e|m)=]]Ple | m)

i=1
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Bayesian Learning of Probabilities

@ Y has two outcomes y and —y.
We want the probability of y given training examples e.

@ We can treat the probability of y as a real-valued random
variable on the interval [0, 1], called ¢. Bayes' rule gives:

P(¢=p|e) =
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Bayesian Learning of Probabilities

@ Y has two outcomes y and —y.
We want the probability of y given training examples e.

@ We can treat the probability of y as a real-valued random
variable on the interval [0, 1], called ¢. Bayes' rule gives:

P(e | p=p) x P(¢=p)
P(e)

P(¢=p|e) =

@ Suppose e is a sequence of n; instances of y and ng
instances of —y:

Ple | 6=p) =
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Bayesian Learning of Probabilities

@ Y has two outcomes y and —y.
We want the probability of y given training examples e.

@ We can treat the probability of y as a real-valued random
variable on the interval [0, 1], called ¢. Bayes' rule gives:

P(e | p=p) x P(¢=p)
P(e)

P(¢=p|e) =

@ Suppose e is a sequence of n; instances of y and ng
instances of —y:

P(e | p=p) = p™ x (1 — p)™

@ Uniform prior: P(¢=p) =1 for all p € [0, 1].
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Posterior Probabilities for Different Training

Examples (beta distribution)
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MAP model

@ The maximum a posteriori probability (MAP) model is the
model m that maximizes P(m | e). That is, it maximizes:

P(e | m) x P(m)
@ Thus it minimizes:
(—log P(e | m)) + (— log P(m))

which is the number of bits to send the examples, e,
given the model m plus the number of bits to send the
model m.
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Averaging Over Models

@ Idea: Rather than choosing the most likely model,
average over all models, weighted by their posterior
probabilities given the examples.

@ If you have observed a sequence of n; instances of y and
no instances of —y, with uniform prior:

> the most likely value (MAP) is —*

no + N
m+1

» the expected value is ———
no+ny+2
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Beta Distribution

1
Betaao,al(p) — Rpalfl X (1 _ p)aofl

where K is a normalizing constant. «; > 0.
@ The uniform distribution on [0, 1] is Beta'!.
@ The expected value is oy /(ag + 7).

If the prior probability of a Boolean variable is Beta®>*1, the

posterior distribution after observing n; true cases and ng false
cases is:
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Beta Distribution

1
Betaao,al(p) — Rpalfl X (1 _ p)aofl

where K is a normalizing constant. «; > 0.

@ The uniform distribution on [0, 1] is Beta'?.

@ The expected value is oy /(ag + 7).

If the prior probability of a Boolean variable is Beta®>*1, the

posterior distribution after observing n; true cases and ng false
cases is:

BetaoéoJrno,alJrnl
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Dirichlet distribution

@ Suppose Y has k values.
@ The Dirichlet distribution has two sorts of parameters,

P positive counts asq, ..., g
«; is one more than the count of the ith outcome.

» probability parameters p1, ..., pk
pi is the probability of the ith outcome

oy Qe a;j—1
Dirichlet®*(py, ..., px) =% H -

where K is a normalizing constant

@ The expected value of ith outcome is
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Hierarchical Bayesian Model

Where do the priors come from?

Example: Sxy is true when patient X is sick in hospital H.
We want to learn the probability of Sick for each hospital.
Where do the prior probabilities for the hospitals come from?

QP AL
D,

o
@ o @&

(a) (b)

©D. Poole and A. Mackworth 2019 Artificial Intelligence, Lecture 10.4 11/11



