
Single agent or multiple agents

Many domains are characterized by multiple agents rather
than a single agent.

Game theory studies what agents should do in a multi-agent
setting. A game is an abstraction of agents interacting.

Agents can be cooperative, competitive or somewhere in
between.

Agents that reason and act autonomoulsly can’t be modeled
as nature.
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Multi-agent framework

Each agent can have its own utility.

Agents select actions autonomously.

Agents can have different information.

The outcome can depend on the actions of all of the agents.

Each agent’s value depends on the outcome.
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Normal Form of a Game

The strategic form of a game or normal-form game:

a finite set I of agents, {1, . . . , n}.
a set of actions Ai for each agent i ∈ I .

An action profile σ is a tuple 〈a1, . . . , an〉, means agent i
carries out ai .

a utility function utility(σ, i) for action profile σ and agent
i ∈ I , gives the expected utility for agent i when all agents
follow action profile σ.
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Rock-Paper-Scissors

Bob
rock paper scissors

rock 0, 0 −1, 1 1,−1
Alice paper 1,−1 0, 0 −1, 1

scissors −1, 1 1,−1 0,0
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Extensive Form of a Game

keep

Andy

Barb Barb Barb

share give

yes no yes no yes no

2,0 0,0 1,1 0,0 0,2 0,0
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Extensive Form of an imperfect-information Game

r p s

rock

Alice

Bob Bob Bob

paper scissors

0,0 1,-1-1,1

r p s

1,-1 -1,10,0

r p s

-1,1 0,01,-1

Bob cannot distinguish the nodes in an information set.
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Multiagent Decision Networks

Fire
Alarm1

Alarm2

Call1

Call2

Call 
Works

Fire Dept 
Comes

U1

U2

Value node for each agent.
Each decision node is owned by an agent.
The parents of each decision node specify what that agent will
observe when making the decision
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Multiple Agents, shared value

...

...
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Complexity of Multi-agent decision theory

It can be exponentially harder to find optimal multi-agent
policy even with a shared values.

Why?

Because dynamic programming doesn’t work:
I If a decision node has n binary parents, dynamic programming

lets us solve 2n decision problems.
I This is much better than

d2n

policies (where d is the number
of decision alternatives).

Multiple agents with shared values is equivalent to having a
single forgetful agent.
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Fully Observable + Multiple Agents

If agents act sequentially and can observe the state before
acting: Perfect Information Games.

Can do dynamic programming or search:
Each agent maximizes for itself.

Multi-agent MDPs: value function for each agent.
each agent maximizes its own value function.

Multi-agent reinforcement learning: each agent has its own Q
function.

Two person, competitive (zero sum) =⇒ minimax.
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1: procedure Minimax(n)
2: . n is a node. Returns value of n, path
3: if n is a leaf node then
4: return evaluate(n),None
5: else if n is a MAX node then
6: max score = −∞; max path=None
7: for each child c of n do
8: score, path := Minimax(c)
9: if score > max score then

10: max score := score ; best path := n : path

11: return max score, best path
12: else
13: min score = ∞; max path=None
14: for each child c of n do
15: score, path := Minimax(c)
16: if score < min score then
17: min score := score ; best path := c : path

18: return min score, best path
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Pruning Dominated Strategies

h i j k l m n o

d e f g

b c

a

7 9 6 11 12 5 4

7

7
11

7

7

≤5 ≤4≤6

≤5

≤5

≥11

MAX

MIN

MIN

MAX

square MAX nodes are controlled by an agent that wants to
maximize the score, round MIN nodes are controlled by an
adversary who wants to minimize the score.
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Partial Observability and Competition

goalkeeper
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal.
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Stochastic Policies

0 0.2 0.4 0.6 0.8 1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

pk

P(goal)

pj=1

pj= 0
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Strategy Profiles

Assume a general n-player game,

A strategy for an agent is a probability distribution over the
actions for this agent.

A strategy profile is an assignment of a strategy to each agent.

A strategy profile σ has a utility for each agent.
Let utility(σ, i) be the utility of strategy profile σ for agent i .

If σ is a strategy profile:
σi is the strategy of agent i in σ,
σ−i is the set of strategies of the other agents.
Thus σ is σiσ−i
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Nash Equilibria

σi is a best response to σ−i if for all other strategies σ′i for
agent i ,

utility(σiσ−i , i) ≥ utility(σ′iσ−i , i).

A strategy profile σ is a Nash equilibrium if for each agent i ,
strategy σi is a best response to σ−i . That is, a Nash
equilibrium is a strategy profile such that no agent can do
better by unilaterally deviating from that profile.

Theorem [Nash, 1950] Every finite game has at least one
Nash equilibrium.
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Multiple Equilibria

Hawk-Dove Game:
Agent 2

dove hawk
Agent 1 dove R/2,R/2 0,R

hawk R,0 -D,-D

D and R are both positive with D >> R.
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Coordination

Just because you know the Nash equilibria doesn’t mean you know
what to do:

Agent 2
shopping football

Agent 1 shopping 2,1 0,0
football 0,0 1,2
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Prisoner’s Dilemma

Two strangers are in a game show. They each have the choice:

Take $100 for yourself

Give $1000 to the other player

This can be depicted as the playoff matrix:

Player 2
take give

Player 1 take 100,100 1100,0
give 0,1100 1000,1000
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Tragedy of the Commons

Example:

There are 100 agents.

There is an common environment that is shared amongst all
agents. Each agent has 1/100 of the shared environment.

Each agent can choose to do an action that has a payoff of
+10 but has a -100 payoff on the environment
or do nothing with a zero payoff

For each agent, doing the action has a payoff of
10− 100/100 = 9

If every agent does the action the total payoff is
1000− 10000 = −9000
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Extensive Form of a Game

What are the Nash equilibria of:

keep

Andy

Barb Barb Barb

share give

yes no yes no yes no

2,0 0,0 1,1 0,0 0,2 0,0

A strategy for Barb is a choice of what to do in each situation.
Action profile eg 1: Andy: keep, Barb: no if keep, otherwise yes.
Action profile eg 2: Andy: share, Barb: yes always

What if the 2,0 payoff was 1.9,0.1?
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Computing Nash Equilibria

To compute a Nash equilibria for a game in strategic form:

Eliminate dominated strategies

Determine which actions will have non-zero probabilities. This
is the support set.

Determine the probability for the actions in the support set
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Eliminating Dominated Strategies

Agent 2
d2 e2 f2

a1 3,5 5,1 1,2
Agent 1 b1 1,1 2,9 6,4

c1 2,6 4,7 0,8
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Computing probabilities in randomized strategies

Given a support set:

Why would an agent will randomize between actions a1 . . . ak?

Actions a1 . . . ak have the same value for that agent given the
strategies for the other agents.

This forms a set of simultaneous equations where variables are
probabilities of the actions

If there is a solution with all the probabilities in range (0,1)
this is a Nash equilibrium.

Search over support sets to find a Nash equilibrium
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Example: computing Nash equilibrium

goalkeeper
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal.

When would goalkeeper randomize?

P(goal | jump left) = p(goal | jump right)

kr ∗ 0.3 + (1− kr) ∗ 0.6 = kr ∗ 0.9 + (1− kr) ∗ 0.2

0.6− 0.2 = (0.6− 0.3 + 0.9− 0.2) ∗ kr

kr = 0.4
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Learning to Coordinate (multiple agents, single state)

Each agent maintains P[A] a probability distribution over
actions.

Each agent maintains Q[A] an estimate of value of doing A
given policy of other agents.

Repeat:
I select action a using distribution P,
I do a and observe payoff
I update Q:

Q[a]← Q[a] + α(payoff − Q[a])
I incremented probability of best action by δ.
I decremented probability of other actions
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