Reasoning with Variables

@ An instance of an atom or a clause is obtained by uniformly
substituting terms for variables.

@ A substitution is a finite set of the form {V4/t1,..., V,/tn},
where each V; is a distinct variable and each t; is a term.

@ The application of a substitution o = {V4/t1,..., V,/ty} to
an atom or clause e, written e, is the instance of e with
every occurrence of V; replaced by t;.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 1

Application Examples

The following are substitutions:
o1 ={X/A,Y/b,Z/C,D/e}
o ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
p(A,b,C,D)o1 =

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 2

Application Examples

The following are substitutions:
o1 ={X/A,Y/b,Z/C,D/e}
o ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
p(A,b,C,D)o1 = p(A, b, C,e)

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 3

Application Examples

The following are substitutions:
o1 ={X/A,Y/b,Z/C,D/e}
o ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
p(A,b,C,D)o1 = p(A, b, C,e)

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 4

Application Examples

The following are substitutions:

o1 ={X/A,Y/b,Z/C,D/e}

o ={A/X,Y/b,C/Z,D/e}

o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:

p(A,b,C,D)o1 = p(A, b, C,e)
p(X,Y,Z,e)o1 = p(A,b,C,e)
p(A,b,C,D)or = p(X, b, Z,e)
p(X,Y,Z, e)or =
p(A,b,C,D)oz =
p(X,Y,Z, e)oz =

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 5

Application Examples

The following are substitutions:
o1 ={X/A,Y/b,Z/C,D/e}
o ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
p(A,b,C,D)o1 = p(A, b, C,e)
X,Y,Z,e)or = p(A,b,C,e)
A, b,C,D)oy = p(X,b,Z,e)

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 6

Application Examples

The following are substitutions:
o1 ={X/A,Y/b,Z/C,D/e}
o ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
p(A,b,C,D)o1 = p(A, b, C,e)
p(X,Y,Z,e)o1 = p(A,b,C,e)

(
p(A7 b, C, D)U2 = p(X7 b, Z, e)
p(X,Y,Z,e)or = p(X,b,Z,e)
p(A,b,C,D)os = p(V, b, W,e)
p(X,Y,Z, e)oz =

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 7

Application Examples

The following are substitutions:
o1 ={X/A,Y/b,Z/C,D/e}
o ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
p(A,b,C,D)o1 = p(A, b, C,e)
p(X,Y,Z,e)o1 = p(A,b,C,e)
p(A,b,C,D)or = p(X, b, Z,e)
p(X,Y,Z,e)or = p(X,b,Z,e)
p(A,b,C,D)os = p(V, b, W,e)
p(X,Y,Z,e)o3 =p(V,b, W, e)

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 8

@ Substitution o is a unifier of e; and & if ej0 = ey0.
@ Substitution ¢ is a most general unifier (mgu) of e; and e if

» o is a unifier of e; and e;; and
» if substitution ¢’ also unifies e; and ey, then eo’ is an instance
of eo for all atoms e.

o If two atoms have a unifier, they have a most general unifier.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 9

Unification Example

Which of the following are unifiers of p(A, b, C, D) and
p(X,Y,Z e):
o1 =4{X/A,Y/b,Z/C,D/e}
o ={Y/b,D/e}
o3 ={X/A,Y/b,Z/C,D/e, W /a}
oa={A/X,Y/b,C/Z,D/e}
os ={X/a,Y/b,Z/c,D/e}
o6 ={A/a,X/a,Y/b,C/c,Z/c,D/e}
o7 ={A/V.X/V,Y/b,C/W,Z/W,D/e}
og ={X/A,Y/b,Z/A C/A D/e}
Which are most general unifiers?

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 10

Unification Example

p(A, b, C,D) and p(X, Y, Z,e) have as unifiers:
o1 ={X/A,Y/b,Z/C,D/e}
oa={A/X,Y/b,C/Z,D/e}

o7 ={A/V,X/V,Y/b,C/W ,Z/W,D/e}
o6 ={A/a,X/a,Y/b,C/c,Z/c,D/e}
og ={X/A,Y/b,Z/A, C/A D/e}
o3 ={X/A,Y/b,Z/C,D/e, W /a}
The first three are most general unifiers.
The following substitutions are not unifiers:
o ={Y/b,D/e}
os ={X/a,Y/b,Z/c,D/e}

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 11

1. procedure unify(ti, t») > Returns mgu of t; and tp or L.

2 E«+ {t1 =t} > Set of equality statements

3 S+ {} > Substitution

4 while E # {} do

5: select and remove x = y from E

6 if y is not identical to x then

7 if x is a variable then

8 replace x with y in E and S

9: S+ {x/y}us

10: else if y is a variable then

11 replace y with x in E and S

12: S+ {y/x}us

13: else if x is p(x1,...,x,) and y is
p(y1;---,yn) then

14: E%EU{Xlzyl,...,Xn:yn}

15: else

16: return L > t; and t do not unify

17: return S > S is mgu of t; and t

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 12

Logical Consequence

Atom g is a logical consequence of KB if and only if:
@ g is an instance of a fact in KB, or

@ there is an instance of a rule
g b1 A .. N Dby

in KB such that each b; is a logical consequence of KB.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 13

Aside: Debugging false conclusions

To debug answer g that is false in the intended interpretation:
o If g is a fact in KB, this fact is wrong.

@ Otherwise, suppose g was proved using the rule:

g+ by A ...Abg

where each b; is a logical consequence of KB.
» If each b; is true in the intended interpretation, this clause is
false in the intended interpretation.
» If some b; is false in the intended interpretation, debug b;.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 14

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB I g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB I~ g implies KB = g.

A proof procedure is complete if KB |= g implies KB |- g.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 15

Bottom-up proof procedure

KB | g if there is g’ added to C in this procedure where g = g’0:
C:={}h

repeat
select clause “"h <+ by A ... A by" in KB such that
there is a substitution 6 such that
for all i, there exists b} € C and ¢, where b;0 = b9’ and
there is no i € C and 6’ such that K0’ = hd
C:=Cu{ho}
until no more clauses can be selected.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 16

live(Y') <— connected_to(Y,Z) A live(Z). live(outside).
connected_to(ws, ws). connected_to(ws, outside).

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 17

live(Y') <— connected_to(Y,Z) A live(Z). live(outside).
connected_to(ws, ws). connected_to(ws, outside).
C = {live(outside),

connected _to(wg, ws),

connected _to(ws, outside),

live(ws),

live(ws)}

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 18

Soundness of bottom-up proof procedure

If KB+ g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that has an
instance that isn't true in every model of KB. Call it h.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 19

Soundness of bottom-up proof procedure

If KB+ g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that has an
instance that isn't true in every model of KB. Call it h.

@ Suppose h isn't true in model / of KB.
@ There must be an instance of clause in KB of form

W<+« biA...N\bp

where

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 20

Soundness of bottom-up proof procedure

If KB+ g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that has an
instance that isn't true in every model of KB. Call it h.

@ Suppose h isn't true in model / of KB.

@ There must be an instance of clause in KB of form

W<+« biA...N\bp

where h = h'0 and b;0 is an instance of an element of C.
Each b;0 is true in /.

his false in /.

So an instance of this clause is false in /.

Therefore | isn't a model of KB.

Contradiction.

v

vV vy VvVvYyYy

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 21

@ The C generated by the bottom-up algorithm is called a fixed
point.

@ C can be infinite; we require the selection to be fair.

@ Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn't contain one.
Each constant denotes itself.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 22

@ The C generated by the bottom-up algorithm is called a fixed
point.

@ C can be infinite; we require the selection to be fair.

@ Herbrand interpretation: The domain is the set of constants.

We invent a constant if the KB or query doesn't contain one.
Each constant denotes itself.

@ Let / be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 23

@ The C generated by the bottom-up algorithm is called a fixed
point.

@ C can be infinite; we require the selection to be fair.

@ Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn't contain one.
Each constant denotes itself.

@ Let / be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

@ / is a model of KB.
Proof:

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 24

The C generated by the bottom-up algorithm is called a fixed
point.

C can be infinite; we require the selection to be fair.
Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn't contain one.
Each constant denotes itself.

Let / be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

| is a model of KB.

Proof: suppose h<— by A... A by in KB is false in I. Then h
is false and each b; is true in /. Thus h can be added to C.
Contradiction to C being the fixed point.

[is called a Minimal Model.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 25

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g. Then g is true in all models of KB.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 26

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g. Then g is true in all models of KB.

@ Thus g is true in the minimal model.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 27

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g. Then g is true in all models of KB.
@ Thus g is true in the minimal model.
@ Thus g is in the fixed point.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 28

Completeness

If KB =g then KB+ g.
Suppose KB |= g. Then g is true in all models of KB.

Thus g is true in the minimal model.
Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 29

Completeness

If KB =g then KB+ g.
Suppose KB |= g. Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.
Thus KB - g.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 30

Top-down Proof procedure

@ A generalized answer clause is of the form
yes(ti, ..., tk) < airNaxA...Aam,

where ty, ..., t, are terms and ay,...,a, are atoms.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 31

Top-down Proof procedure

@ A generalized answer clause is of the form
yes(ti, ..., tk) < airNaxA...Aam,
where ty, ..., t, are terms and ay,...,a, are atoms.

@ The SLD resolution of this generalized answer clause on a;
with the clause

a< by A...Abp,
where a; and a have most general unifier 0, is
(ves(ty, ..., tx) <
aiA...Naj_1 AbiA .. Abp A aip1A ... ANam)b.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 32

Top-down Proof Procedure

To solve query 7B with variables Vi, ..., Vi:
Set ac to generalized answer clause yes(V4,..., V) < B
while ac is not an answer do

Suppose ac is yes(t1,...,tk) <— a1 AaxA...\am

select atom a; in the body of ac
choose clause a <~ by A ... A by in KB
Rename all variables in a <— by A ... A by
Let # be the most general unifier of a; and a.
Fail if they don't unify
Set ac to (yes(t1,...,tk) < a1 A ... Aaj—1A
b1/\.../\bp/\a,-+1/\.../\am)0

end while.
Answer is V1 = t1,..., Vi = ti
where ac is yes(t1, ..., tx) <

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 33

live(Y') <— connected_to(Y,Z) A live(Z). live(outside).
connected_to(ws, ws). connected_to(ws, outside).
2ive(A).

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 34

live(Y') <— connected_to(Y,Z) A live(Z). live(outside).
connected_to(ws, ws). connected_to(ws, outside).
2ive(A).

yes(A) <« live(A).

yes(A) < connected_to(A, Z1) A live(Zy).

yes(wg) < live(ws).

yes(wg) <— connected_to(ws, Z3) A live(Zs).

yes(wg) < live(outside).

yes(wg) .

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 35

Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

@ We extend the notion of term. So that a term can be
f(ti,...,ts) where f is a function symbol and the t; are
terms.

In an interpretation and with a variable assignment, term
f(t1,...,ty) denotes an individual in the domain.

One function symbol and one constant can refer to infinitely
many individuals.

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 36

@ A list is an ordered sequence of elements.

@ Let's use the constant nil to denote the empty list, and the
function cons(H, T) to denote the list with first element H
and rest-of-list T. These are not built-in.

@ The list containing sue, kim and randy is
cons(sue, cons(kim, cons(randy, nil)))

@ append(X,Y,Z) is true if list Z contains the elements of X
followed by the elements of Y

append(nil, Z,Z).
append(cons(A, X), Y, cons(A, Z))+ append(X, Y, Z).

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 37

Unification with function symbols

@ Consider a knowledge base consisting of one fact:
It(X,s(X)).
@ Should the following query succeed?

ask It(Y,Y).

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 38

Unification with function symbols

@ Consider a knowledge base consisting of one fact:
It(X,s(X)).

@ Should the following query succeed?
ask It(Y,Y).

@ What does the top-down proof procedure give?

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 39

Unification with function symbols

@ Consider a knowledge base consisting of one fact:
It(X,s(X)).

@ Should the following query succeed?
ask It(Y,Y).

@ What does the top-down proof procedure give?

@ Solution: variable X should not unify with a term that
contains X inside.
E.g., X should not unify with s(X).
Simple modification of the unification algorithm, which Prolog
does not do!

@©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.3, Page 40

