
Implementing Knowledge-based Systems

To build an interpreter for a language, we need to distinguish

Base language the language of the RRS being implemented.

Metalanguage the language used to implement the system.

They could even be the same language!

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 1



Implementing the base language

Let’s use the definite clause language as the base language and the
metalanguage.

We need to represent the base-level constructs in the
metalanguage.

We represent base-level terms, atoms, and bodies as
meta-level terms.

We represent base-level clauses as meta-level facts.

In the non-ground representation base-level variables are
represented as meta-level variables.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 2



Representing the base level constructs

Base-level atom p(t1, . . . , tn) is represented as the meta-level
term p(t1, . . . , tn).

Meta-level term oand(e1, e2) denotes the conjunction of
base-level bodies e1 and e2.

Meta-level constant true denotes the object-level empty body.

The meta-level atom clause(h, b) is true if “h if b” is a clause
in the base-level knowledge base.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 3



Example representation

The base-level clauses

connected to(l1,w0).

connected to(w0,w1)← up(s2).

lit(L)← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

clause(connected to(l1,w0), true).

clause(connected to(w0,w1), up(s2)).

clause(lit(L), oand(light(L), oand(ok(L), live(L)))).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 4



Making the representation pretty

Use the infix function symbol “&” rather than oand .
I instead of writing oand(e1, e2), you write e1 & e2.

Instead of writing clause(h, b) you can write h⇐ b, where ⇐
is an infix meta-level predicate symbol.

I Thus the base-level clause “h← a1 ∧ · · · ∧ an” is represented
as the meta-level atom h⇐ a1 & · · · & an.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 5



Example representation

The base-level clauses

connected to(l1,w0).

connected to(w0,w1)← up(s2).

lit(L)← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

connected to(l1,w0)⇐ true.

connected to(w0,w1)⇐ up(s2).

lit(L)⇐ light(L) & ok(L) & live(L).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 6



Vanilla Meta-interpreter

prove(G ) is true when base-level body G is a logical consequence
of the base-level KB.

prove(true).

prove((A & B))←
prove(A) ∧
prove(B).

prove(H)←
(H ⇐ B) ∧
prove(B).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 7



Example base-level KB

live(W )⇐
connected to(W ,W1) &

live(W1).

live(outside)⇐ true.

connected to(w6,w5)⇐ ok(cb2).

connected to(w5, outside)⇐ true.

ok(cb2)⇐ true.

?prove(live(w6)).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 8



Expanding the base-level

Adding clauses increases what can be proved.

Disjunction Let a; b be the base-level representation for the
disjunction of a and b. Body a; b is true when a is true, or b
is true, or both a and b are true.

Built-in predicates You can add built-in predicates such as N
is E that is true if expression E evaluates to number N.

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 9



Expanded meta-interpreter

prove(true).

prove((A & B))←
prove(A) ∧ prove(B).

prove((A;B))← prove(A).

prove((A;B))← prove(B).

prove((N is E ))←
N is E .

prove(H)←
(H ⇐ B) ∧ prove(B).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 10



Depth-Bounded Search

Adding conditions reduces what can be proved.

% bprove(G ,D) is true if G can be proved with a proof tree of
depth less than or equal to number D.

bprove(true,D).

bprove((A & B),D)←
bprove(A,D) ∧ bprove(B,D).

bprove(H,D)←
D ≥ 0 ∧ D1 is D − 1 ∧
(H ⇐ B) ∧ bprove(B,D1).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 14.5, Page 11


